基于正交经验模态分解的活塞销磨损特征提取算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

山东省自然科学基金项目(ZR2020QF062)


Algorithm for Extracting Wear Characteristics of Piston Pins Based on Orthogonal Empirical Mode Decomposition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于活塞销磨损特征信号容易受到柴油机运行过程中的环境振动噪声干扰,构建有效的振动信号分解和降噪算法体系是实现活塞销磨损信号特征提取的有效途径,这对于建立可靠、精确的二元分类器模型来识别活塞销磨损至关重要。针对振动信号分解和降噪问题,本文提出一种基于正交经验模态分解(Orthogonal empirical mode decomposition,OEMD)结合连续小波变换(Continuous wavelet transform,CWT)和主元分析(Principal component analysis,PCA)的振动信号特征提取法。利用正交传感器布局采集实际运行中柴油机活塞销的振动信号,采用 OEMD 将正交融合后的振动信号分解为多个经验模态函数(Intrinsic mode function,IMF),然后选取能量占比85%的前4个 IMF 分量进行CWT处理得到小波系数矩阵,最后将该矩阵经PCA运算后的最优得分矩阵输入K-means聚类算法中进行分类。实际实验数据验证了所提方法的有效性,正交融合结果综 合了整体趋势和极值分布,因此比单一传感器更可靠,从而避免了因传感器安装位置不合适而造成的干扰或特征缺失。通过与EMD-AR谱算法以及变分模态分解(Variational mode decomposition,VMD)算法对比,本文所提方法具有更强的降噪和特征提取能力,在 K-means算法中分类效果较为明显,为二分类器建模识别活塞销磨损奠定了基础。

    Abstract:

    As piston pin worn features are susceptible to environmental vibration disturbance during diesel engine operation, an effective vibration signal decomposition and noise reduction process is a promising way to enhance the disturbed signals, which is essential to build a reliable and precise binary classifier model to identify piston pin worn. To solve the problem of vibration signal decomposition and noise reduction, a feature extraction algorithm based on orthogonal empirical mode decomposition( OEMD )combined with continuous wavelet transform( CWT )and principal component analysis(PCA)was proposed. The orthogonal sensor layout was used to collect the vibration signal of the piston pin of the diesel engine in actual operation, and OEMD was used to decompose the orthogonal fusion vibration signal into multiple intrinsic mode functions(IMF), and then the first four IMF components with 85% energy were selected for CWT processing to obtain the wavelet coefficient matrix. Finally, the optimal score matrix after PCA operation was input into the K-means clustering algorithm for classification. The actual experimental data verified the effectiveness of the proposed method, and the orthogonal fusion results integrated the overall trend and extreme value distribution, so it was more reliable than a single sensor, thus avoiding the interference or feature loss caused by inappropriate sensor installation position. Compared with EMD combined with AR spectrum algorithm and VMD algorithm, the proposed method had stronger noise reduction and feature extraction capabilities, and the classification effect was more obvious in K-means algorithm, which laid a foundation for two-classifier modeling and identification of piston pin wear.

    参考文献
    相似文献
    引证文献
引用本文

杨昊,翟玉彬,梁建辉,郭栋梁,刘先良,张瑞.基于正交经验模态分解的活塞销磨损特征提取算法[J].农业机械学报,2024,55(s1):412-419. YANG Hao, ZHAI Yubin, LIANG Jianhui, GUO Dongliang, LIU Xianliang, ZHANG Rui. Algorithm for Extracting Wear Characteristics of Piston Pins Based on Orthogonal Empirical Mode Decomposition[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(s1):412-419.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-01
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-10
  • 出版日期:
文章二维码