基于改进YOLO v8的苹果树树干精准识别方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

山东省重点研发计划项目(2022CXGC020706)、国家苹果产业技术体系项目(CARS-27)、山东省青年科技人才托举工程项目(SDAST2024QTA050)、山东省高等学校“青创团队计划”项目(2023KJ160)和乡村振兴科技创新提振行动计划项目(2023TZXD061)


Accurate Apple Tree Trunk Recognition Method Based on Improved YOLO v8
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对苹果树树干识别中存在检测精度差与速度低的问题,提出一种基于改进 YOLO v8 的苹果树树干精准识别方法。首先,采用深度感知相机采集苹果树树干图像,并以YOLO v8 为基准模型,采用结构重参数化卷积替换卷积层,增强模型特征学习能力。其次,优化特征融合单元,增加动态头部检测机制,提升检测速度与检测精度。最后,以传统 YOLO v8、Fast R-CNN等作为对照模型,以平均精度和帧率等作为评价指标,进行田间试验。结果表明,本文改进模型具备精准识别苹果树树干的能力,平均精度达到 95.07%,检测速度提升至112.53 f/s,模型参数量为4.512×107。相比传统YOLO v8 模型,平均精度提高了4.98个百分点,检测速度提高了3.24 f/s。与主流的目标检测模型 Fast R-CNN、YOLO v7、YOLO v5、YOLO v3 相比,改进模型平均精度分别高出15.26、6.33、9.59、13.41 个百分点;检测速度分别高出96.81、75.27、2.23、57.10 f/s;参数量比Fast R-CNN、YOLO v5、YOLO v3分别减少9.198×107、1.93×106、1.641×107。该研究为苹果园中自主导航及智能 作业提供了技术与方法支持。

    Abstract:

    To address the issues of low detection accuracy and speed in apple tree trunk recognition, this paper proposes a precise apple tree trunk recognition method based on an improved YOLO v8 model. First, a depth-sensing camera is used to capture images of apple tree trunks, and YOLO v8 is adopted as the baseline model. The convolutional layers are replaced with re-parameterized convolution structures to enhance the model′s feature learning capability. Second, the feature fusion unit is optimized by introducing a dynamic head detection mechanism, which improves both detection speed and accuracy. Finally, field experiments were conducted using traditional YOLO v8, Fast R-CNN, and other models as baselines, with average recognition accuracy and frame rate as evaluation metrics. The results show that the improved model is capable of accurately recognizing apple tree trunks, achieving an average recognition accuracy of 95.07% and a detection speed of 112.53 f/s, and the model parameters amount to 4.512×107. Compared with the traditional YOLO v8 model, the average recognition accuracy increased by4.98 percentage points, and detection speed increased by 3.24 f/s. Compared with mainstream object detection models such as Fast R-CNN, YOLO v7, YOLO v5, and YOLO v3, the improved model outperformed them in average recognition accuracy by 15.26, 6.33, 9.59, and 13.41 percentage points, respectively, and in detection speed by 96.81, 75.27, 2.23, and 57.10 f/s, respectively. Additionally, the model′s parameter count was reduced by 9.198× 107, 1.93×106, and 1.641×107 compared to Fast R-CNN, YOLO v5, and YOLO v3, respectively. This research provides technical and methodological support for autonomous navigation and intelligent operations in apple orchards.

    参考文献
    相似文献
    引证文献
引用本文

张宏建,孙智霖,亓新春,曹鑫鹏,任松,王金星.基于改进YOLO v8的苹果树树干精准识别方法[J].农业机械学报,2024,55(s1):246-255,262. ZHANG Hongjian, SUN Zhilin, QI Xinchun, CAO Xinpeng, REN Song, WANG Jinxing. Accurate Apple Tree Trunk Recognition Method Based on Improved YOLO v8[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(s1):246-255,262.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-25
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-10
  • 出版日期:
文章二维码