基于MobileNetV2-CBAM的机收场景下冬小麦成熟期在线分类识别方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

中央高校基本科研业务费专项资金项目(2024TC183)和中国农业大学横向课题项目(202405410710092)


Online Classification and Identification Method of Winter Wheat Maturity under Mechanical Harvesting Scenario Based on MobileNetV2-CBAM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    小麦成熟期在线精准分类识别将为实现联合收获机的智能化调控提供有效支撑。本文提出一种基于车载相机和深度 学习结合的冬小麦成熟期在线分类方法。以车载相机拍摄的实时图像为主,无人机拍摄的图像为辅,构建小麦乳熟-蜡熟初期、蜡熟后期-完熟初期、完熟后期-枯熟期和已收割区数据集(4400 幅)。针对机收环境复杂、小麦图像模糊等问题,以 MobileNetV2 为基础网络结构,在特征提取后添加卷积注意力模块(Convolutional block attention module, CBAM )提升对 图像特征的自适应提取能力。为了评估模型可信度,采用可视化技术观察模型对图像的关注区域。以不同分类模型为对比,对建立的 MobileNetV2-CBAM 模型性能进行评价。试验结果表明,MobileNetV2-CBAM 模型在测试集中的分类识别准 确率达到 99.5%,相比于MobileNetV2 高 0.7 个百分点;与 ResNet 和 Swin Transformer 模型相比,在分类精度未发生明显差异的前提下,MobileNetV2-CBAM 模型内存占用量( 8.73 MB )仅为其1/8 和1/11。为了验证模型实际应用效果, 田间试验结 果表明,在车速4~6 km/h 条件下,每隔1 s识别1幅图像,成熟期分类识别精度为 96.8%,满足机收场景下的小麦成熟期在 线分类准确性和实时性要求。

    Abstract:

    The precise online classification and identification of wheat maturity stages will offer valuable support for the intelligent control of combine harvesters. An online classification method was proposed for wheat maturity stages that combined vehicle-mounted cameras with deep learning techniques. By using real-time images captured by vehicle-mounted cameras, along with additional images from drones, a dataset of 4400 images was constructed, which included various wheat maturity stages, including milk ripening-early wax ripening stage, late wax ripening-early full ripening stage, late full ripening-dry ripening stage and harvested area. To address challenges such as complex harvesting environments and blurry wheat images, the MobileNetV2 was employed as the foundational network structure. Additionally, a convolutional block attention module(CBAM)was incorporated after feature extraction to enhance the adaptive capability of image feature extraction. To assess the credibility of the model, visualization techniques were employed to examine the areas of interest identified by the model in the images. The performance of the MobileNetV2 - CBAM model was compared with other classification models. Results indicated that the MobileNetV2 - CBAM model achieved a classification accuracy of 99.5% on the test set, which was 0.7 percentage points higher than that of MobileNetV2. When compared with ResNet and Swin Transformer models, the MobileNetV2 - CBAM model demonstrated similar classification accuracy but with a significantly smaller model memory usage(8.73 MB)—only 1/8 and1/11 of the memory usage of ResNet and Swin Transformer, respectively. Field experiments further validated the model’s practical application:at vehicle speeds of 4 km/h to 6 km/h, the system recognized an image every second with a maturity classification accuracy of 96.8%, meeting the accuracy and real-time requirements for online wheat maturity classification in mechanical harvesting scenarios.

    参考文献
    相似文献
    引证文献
引用本文

王发明,倪昕东,张旗,陶伟,陈度,毛旭.基于MobileNetV2-CBAM的机收场景下冬小麦成熟期在线分类识别方法[J].农业机械学报,2024,55(s1):71-80,100. WANG Faming, NI Xindong, ZHANG Qi, TAO Wei, CHEN Du, MAO Xu. Online Classification and Identification Method of Winter Wheat Maturity under Mechanical Harvesting Scenario Based on MobileNetV2-CBAM[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(s1):71-80,100.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-18
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-10
  • 出版日期:
文章二维码