杂交水稻制种父本倒播差插秧视觉导航线实时提取方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2023YFD2000402)、国家现代农业产业技术体系项目(CARS-01)、浙江省“三农九方”农业科技协作计划项目(2023SNJF048)和浙江大学科研项目(XY2023042)


Real-time Guideline Extraction Method for Male Parent Transplanting in Hybrid Rice Seed Production
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在杂交水稻制种过程中,父本倒播差插秧作为确保制种成功的关键策略之一,对时间敏感性与空间精确性提出了极高要求。视觉导航可显著提升作业精度与效率,然而,面对多样化制种条件,如母本作物的形态差异、作物行内的漏插现象以及作物行的低直线度等问题,实时且准确地提取行间导航线成为制约制种智能化、高效化发展的关键。针对上述问题,提出了一种高效、精确、实时的行间导航线提取方法,并对其进行了全面验证。构建了一个包含不同播差的倒播差数据集,并基于此数据集,优选双分支分割网络(BiSeNet V2)训练模型提取母本作物行掩膜。利用掩膜内各像素的距离转换结果,提取母本作物行的中心线。使用分段筛选法提取最靠近父本厢左右两侧的母本作物行中心线作为父本厢边界线。使用旋转扫描法配对两侧父本厢边界线特征点,并将配对的特征点对中点作为导航线特征点。采用样条曲线将导航线特征点拟合连接,形成最终的插秧导航线。语义分割试验结果表明,BiSeNet V2 分割结果的平均像素精确度、平均交并比和推 理速度分别为88.73%、57.47% 和143.32 f/s。导航线提取试验结果显示,该导航线提取方法平均偏差为4.66 像素,标准差为2.73 像素,导航线提取速度为12.52 f/s。田间试验进一步验证了本研究方法的有效性。试验数据显示,自动导航插秧路径与人工标定的最佳路径之间的平均偏差仅为64.93 mm,标准差为51.96 mm,其中80%以上的定位点偏差小于 83.26 mm。本文提出的杂交水稻制种父本倒播差行间实时导航线提取方法,通过集成数据集的完整制备、母本作物行的高效分割、作 物行中心线的准确提取、父本厢边界线特征点的正确配对以及样条曲线的精确拟合,显著提高了导航线提取的实时性、准 确性和鲁棒性。为杂交水稻制种父本倒播差行间实时插秧导航提供了重要参考。

    Abstract:

    In the process of hybrid rice seed production,the staggered transplanting of male parent seedlings, as one of the crucial strategies to ensure the success of seed production, poses stringent requirements on time sensitivity and spatial accuracy. The widespread application of visual navigation brought unprecedented potential to this delicate operation process. However, challenges arise from the morphological differences of female parent seedlings at various seedlings ages, instances of missing seedlings within rows, and poor row linearity. To address these issues, an efficient and precise real-time guideline extraction method was proposed and validated through comprehensive experimentation. Firstly, a staggered transplanting dataset was created, incorporating different seedling ages to meet the needs of various rice varieties. Utilizing this dataset, the BiSeNet V2(a dual-branch segmentation network)was trained to extract the female parent row masks. The distance transformation of pixels within these masks was then used to extract the crop row centerlines, accurately representing the row positions. The nearest left and right row centerlines to the male parent area were extracted by using a segmented filtering method. The feature points of these centerlines were paired by using a rotational scanning method, and the midpoints of the paired feature points were used as the navigation line feature points. Finally,B-spline curves were employed to fit these guideline feature points, forming the final transplanting guideline. Semantic segmentation experiments demonstrated that the BiSeNet V2 achieved an average pixel accuracy, mean intersection over union(mIoU), and inference speed of 88.73%, 57.47%, and 143.32 frames per second(f/s), respectively. Guideline extraction experiments showed an average deviation of 4.66 pixels, a standard deviation of 2.73 pixels, and an extraction speed of 12.52 f/s. Field experiments further verified the effectiveness of the proposed method, showing an average deviation of 64.93 mm between the automatic navigation transplanting path and the manually marked optimal path, with a standard deviation of 51.96 mm and over 80% of positioning points having a deviation of less than 83.26 mm. In summary, the proposed guideline extraction method for male parent transplanting in hybrid rice seed production significantly enhanced the real-time, accuracy, and robustness of guideline extraction. This was achieved through the comprehensive preparation of the dataset, efficient segmentation of male parent rows, accurate extraction of crop row centerlines, correct pairing of feature points, and precise fitting of B-spline curves. The research result can provide a significant reference for the automatic navigation of male parent transplanting in hybrid rice seed production.

    参考文献
    相似文献
    引证文献
引用本文

潘宇镭,吴雨铧,李成龙,史荣凯,赵岳飞,王永维,王俊.杂交水稻制种父本倒播差插秧视觉导航线实时提取方法[J].农业机械学报,2024,55(s1):41-50. PAN Yulei, WU Yuhua, LI Chenglong, SHI Rongkai, ZHAO Yuefei, WANG Yongwei, WANG Jun. Real-time Guideline Extraction Method for Male Parent Transplanting in Hybrid Rice Seed Production[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(s1):41-50.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-06
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-10
  • 出版日期:
文章二维码