基于YOLO v8和CycleGAN的红掌植株表型参数自动提取方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

上海市科技创新计划项目(20dz1203800)


Automatic Extraction of Phenotypic Parameters from Anthurium andraeanum Linden Based on YOLO v8 and CycleGAN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    植株表型参数是描述植物形态、结构和生理特征的定量化指标,可揭示植物生长规律,以及与环境因素之间的关系。现有的人工测量和激光雷达点云植株表型参数提取方法存在数据误差大、易损伤植株、成本高和数据量大等问题。为此,本文提出了一种基于YOLO v8和CycleGAN的红掌植株表型参数自动提取方法,利用双重注意力机制CBAM改进YOLO v8,提高模型特征提取能力,对红掌植株叶片进行检测与分割;通过Grabcut算法去除分割后图像背景区域特征,并利用VGG模型对其进行分类,分出完整型红掌植株叶片和缺失型红掌植株叶片;在CycleGAN的生成器中引入双重注意力机制和特征金字塔,提高模型多尺度特征的提取能力,引入SmoohL1损失函数,提升模型稳定性,对缺失型红掌植株叶片进行修复;提出一种表型参数提取算法(Phenotypic parameters extraction algorithms,PPEA),实现对红掌植株叶长、叶宽和叶面积的自动提取。以650幅自建数据集为例,对上述方法进行了比较与分析,实验结果证明,本文方法在红掌植株表型参数自动提取方面具有良好的效果。

    Abstract:

    Phenotypic parameters of plants are quantitatively indicated, describing the morphology, structure, and physiological characteristics of plants, unveiling the growth patterns and relationships with environmental factors. Issues such as significant data errors, plant damage, high costs, and extensive data volume were exhibited by existing manual measurement and laser scanning-based methods for extracting plant phenotypic parameters. Therefore, an automatic extraction method for phenotypic parameters of Anthurium andraeanum Linden plants based on YOLO v8 and CycleGAN was proposed. The method included the follows: YOLO v8 was enhanced with the convolutional block attention module to improve the model’s feature extraction capabilities for detecting and segmenting Anthurium andraeanum Linden leaves;the Grabcut algorithm was utilized to eliminate background features from segmented images, and the VGG model was employed for classification to distinguish intact and missing Anthurium andraeanum Linden leaves;the convolutional block attention module and feature pyramid network were introduced into the CycleGAN generator to enhance multi-scale feature extraction capabilities, incorporating the SmoothL1 loss function to enhance model stability and repair missing Anthurium andraeanum Linden leaves;a phenotypic parameters extraction algorithm (PPEA) was proposed to automatically extract leaf length, leaf width, and leaf area of Anthurium andraeanum Linden plants. The proposed methods were compared and analyzed by using a dataset of 650 self-collected images. Experimental results demonstrated the effectiveness of the proposed approach in automatically extracting phenotypic parameters of Anthurium andraeanum Linden plants.

    参考文献
    相似文献
    引证文献
引用本文

卢鹏,孙天文,陈明,王振华,郑宗生.基于YOLO v8和CycleGAN的红掌植株表型参数自动提取方法[J].农业机械学报,2024,55(11):154-159,319. LU Peng, SUN Tianwen, CHEN Ming, WANG Zhenhua, ZHENG Zongsheng. Automatic Extraction of Phenotypic Parameters from Anthurium andraeanum Linden Based on YOLO v8 and CycleGAN[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(11):154-159,319.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-30
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-10
  • 出版日期:
文章二维码