基于中红外光谱特征增强和集成学习的土壤有机碳含量估算模型研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

云南省科技计划项目(202202AE090013)、黑龙江省“揭榜挂帅”科技攻关项目(2021ZXJ05A0502)和重庆市技术创新与应用发展专项(cstc2021jscx-gksbX0064)


Estimation Model of Soil Organic Carbon Content Based on Mid-infrared Spectral Characteristics Enhancement and Ensemble Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    中红外光谱数据在实现土壤有机碳含量的准确、低成本快速预测方面具有巨大潜力。为提高光谱数据估算模型的普适性,本研究利用光谱特征增强策略,并基于Stacking算法结合多种机器学习方法构建了一种高鲁棒性的土壤有机碳含量估算模型。采用多种光谱特征增强方法及其组合对土壤中红外光谱进行特征增强,筛选最佳策略;通过应用Stacking算法结合多种机器学习方法构建集成模型,以提高模型泛化能力;将集成模型估算性能与偏最小二乘回归模型(PLSR)、梯度提升树(GBT)和一维卷积神经网络(1D-CNN)模型进行比较分析。研究结果表明,最佳光谱特征增强策略可以显著提高土壤光谱数据与土壤有机碳含量的相关性,最佳Pearson相关系数达到 -0.82;相较于PLSR、GBT和1D-CNN等模型,集成模型在各光谱数据下均表现出较高的估算精度,特别是在一阶导变换结合多元散射校正的光谱特征增强策略下,集成模型展现出优良的估算性能(决定系数R2=0.92,均方根误差为1.18g/kg,相对分析误差为3.52)。本研究方法能够快速、准确地估算土壤有机碳含量,可为现代农业管理提供科学依据。

    Abstract:

    Mid-infrared spectral data holds immense potential for accurate, cost-effective, and rapid prediction of soil organic carbon (SOC) content. To enhance the universality of spectroscopic data estimation models, a spectroscopic feature enhancement strategy was employed and combined multiple machine learning methods by using the Stacking algorithm to construct a robust model for estimating SOC content. Various spectroscopic feature enhancement methods and their combinations were applied to enhance the features of mid-infrared soil spectra and select the optimal strategies. The Stacking algorithm was used in conjunction with multiple machine learning methods to build an ensemble model, aiming to improve the model’s generalization ability. The estimation performance of the ensemble model was compared with that of partial least squares regression (PLSR), gradient boosting trees (GBT), and 1-dimensional convolutional neural network (1D-CNN) models. The results demonstrated that the optimal spectral characteristics enhancement strategy can significantly improve the correlation between soil spectra and soil organic carbon content, and the optimal Pearson correlation coefficient reached -0.82. Compared with PLSR, GBT, and 1D-CNN models, the ensemble model exhibited higher estimation accuracy and robustness across various spectral datasets. In particular, under the spectral characteristic enhancement strategy of first derivative combined with multivariate scatter correction, the ensemble model demonstrated excellent estimation performance (R2=0.92, RMSE was 1.18g/kg, RPD was 3.52). The proposed method enabled timely and accurate estimation of SOC, which can provide a scientific basis for modern agricultural management.

    参考文献
    相似文献
    引证文献
引用本文

唐澳华,杨贵军,杨悦,陈伟男,徐新刚,徐波,高美玲,张静.基于中红外光谱特征增强和集成学习的土壤有机碳含量估算模型研究[J].农业机械学报,2024,55(8):382-390. TANG Aohua, YANG Guijun, YANG Yue, CHEN Weinan, XU Xin’gang, XU Bo, GAO Meiling, ZHANG Jing. Estimation Model of Soil Organic Carbon Content Based on Mid-infrared Spectral Characteristics Enhancement and Ensemble Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(8):382-390.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-23
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-10
  • 出版日期:
文章二维码