基于改进YOLO v8n-seg的羊只实例分割方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

河北省重点研发计划项目(22327403D)和河北省现代农业产业技术体系羊产业创新团队专项资金项目(HBCT2024250204)


Sheep Instance Segmentation Method Based on Improved YOLO v8n-seg
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    羊只实例分割是实现羊只识别和跟踪、行为分析和管理、疾病监测等任务的重要前提。针对规模化羊场复杂养殖环境中,羊只个体存在遮挡、光线昏暗、个体颜色与背景相似等情况所导致的羊只实例错检、漏检问题,提出了一种基于改进YOLO v8n-seg的羊只实例分割方法。以YOLO v8n-seg网络作为基础模型进行羊只个体分割任务,首先,引入Large separable kernel attention模块以增强模型对实例重要特征信息的捕捉能力,提高特征的代表性及模型的鲁棒性;其次,采用超实时语义分割模型DWR-Seg中的Dilation-wise residual模块替换C2f中的Bottleneck模块,以优化模型对网络高层特征的提取能力,扩展模型感受野,增强上下文语义之间的联系,生成带有丰富特征信息的新特征图;最后,引用Dilated reparam block模块对C2f进行二次改进,多次融合从网络高层提取到的特征信息,增强模型对特征的理解能力。试验结果表明,改进后的YOLO v8n-LDD-seg对羊只实例的平均分割精度mAP50达到92.08%,mAP50:90达到66.54%,相较于YOLO v8n-seg,分别提升3.06、3.96个百分点。YOLO v8n-LDD-seg有效提高了羊只个体检测精度,提升了羊只实例分割效果,为复杂养殖环境下羊只实例检测和分割提供了技术支持。

    Abstract:

    Sheep instance segmentation is an important prerequisite for sheep identification and tracking, behavior analysis and management, and disease monitoring. Aiming at the problem of false detection and missed detection of sheep instance detection caused by the occlusion of sheep individuals, dim light, and the similarity of individual color and background in the complex breeding environment of large-scale sheep farms, a sheep instance segmentation method based on improved YOLO v8n-seg was proposed. The YOLO v8n-seg network was used as the basic model for the individual sheep segmentation task. Firstly, the large separable kernel attention module was introduced to enhance the ability of the model to capture important feature information of the instance, which improved the representativeness of the features and the robustness of the model. Secondly, the bottleneck module in C2f was replaced by the expansion-wise residual module in DWR-Seg, a hyperreal-time semantic segmentation model, to optimize the ability of the model to extract high-level network features, expanding the receptive field of the model, and enhanced the relationship between context semantics. Generate new feature maps with rich feature information. Finally, the dilated reparam block module was used to further improve C2f, and the feature information extracted from the high level of the network was fused several times to enhance the understanding ability of the model. The experimental results showed that the average segmentation accuracy of the improved YOLO v8n-LDD-seg for sheep cases reached 92.08% at mAP50 and 66.54% at mAP50:90. Compared with YOLO v8n-seg, mAP50 and mAP50:95 were improved by 3.06 percentage points and 3.96 percentage points, respectively. YOLO v8n-LDD-seg effectively improved the detection accuracy of individual sheep, improved the segmentation effect of sheep instances, and provided technical support for the detection and segmentation of sheep instances in complex breeding environments.

    参考文献
    相似文献
    引证文献
引用本文

王福顺,王旺,孙小华,王超,袁万哲.基于改进YOLO v8n-seg的羊只实例分割方法[J].农业机械学报,2024,55(8):322-332. WANG Fushun, WANG Wang, SUN Xiaohua, WANG Chao, YUAN Wanzhe. Sheep Instance Segmentation Method Based on Improved YOLO v8n-seg[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(8):322-332.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-15
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-10
  • 出版日期:
文章二维码