非接触式笼养蛋鸡核心体温检测方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2021YFD1300100)和政府间国际科技创新合作重点项目(2018YFE0128100)


Non-contact Core Body Temperature Detection Method for Caged Laying Hens
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对笼养条件下蛋鸡核心温度测量工作效率低下的问题,提出了一种利用红外热图像结合深度学习的蛋鸡核心温度检测方法。首先通过采集172只蛋鸡的10994幅红外热图像制作数据集,利用目标检测网络YOLO v8s提取作为感兴趣区域(Region of interest, ROI)的鸡脸图像;再利用改进的深度卷积神经网络对提取的蛋鸡ROI图像以及实时采集的蛋鸡泄殖腔温度进行回归预测。实验显示,目标检测算法的检测准确率达到99.38%,平均精度均值达到99.9%,召回率达到99.87%,3项评价指标均高于YOLO v4s、YOLO v5s、YOLO v7、YOLOX-s目标检测算法;在深度卷积神经网络算法上,同时将MobileNetV3、GhostNet、ShuffleNetV2、RegNet、ConvNeXt、Res2Net以及MobileVIT共7种分类模型修改为回归模型,利用蛋鸡ROI图像进行训练,其中,Res2Net模型对蛋鸡核心体温估测拟合效果最好,在测试集上估测的决定系数R2为0.9565、调整后决定系数R2adj为0.95631,均高于其他回归模型;为进一步提高预测精度,在Res2Net50回归模型的Bottle2block结构之后分别插入SE(Squeeze-and-excitation)模块、CBAM(Convolutional block attention module)模块、CA(Coordinate attention)模块、ECA(Efficient channel attention)模块,其中利用CA模块改进后的算法在测试集上的R2为0.97364、R2adj为0.97352,均高于其他改进方法;利用目标检测网络和回归网络搭建蛋鸡核心体温估测模型,对9只蛋鸡进行体温估测试验,结果显示ROI均能完整找出,且估测体温平均绝对误差(Mean absolute error, MAE)为0.153℃。因此,本研究提出的目标检测+深度神经网络模型为红外热图像下蛋鸡核心温度预测提供了较好的自动化检测方法。

    Abstract:

    Core body temperature (CBT) measurement of laying hens is very complex under cage breeding conditions. Meanwhile, traditional measurement methods also require handing the hens, can be stressful. Infrared thermography is an alternative means for assessing hens core temperature. A method was proposed for estimating the CBT of laying hens using infrared thermography and deep learning. A total of 10994 infrared thermal images and corresponding CBT were collected through 172 hens. The hens facial were selected as region of interest (ROI). The YOLO v8s object detection algorithm was employed to automatically identify the ROI within the images. Additionally, the modified Res2Net50 network was used for regression training between ROI images and CBT values. Then the above two algorithms were combined to directly estimate the CBT of laying hens using infrared thermal images. Comparative experiments were conducted with four object detection algorithms (YOLO v4s, YOLO v5s, YOLO v7, YOLOX-s), and the results indicated that YOLO v8s achieved superior precision (99.38%), mAP(99.9%), and recall(99.87%), compared with the other algorithms. Furthermore, seven algorithms (MobileNetV3, GhostNet, ShuffleNetV2, RegNet, ConvNeXt, Res2Net, MobileVIT) were compared with the modified Res2Net, and the results demonstrated that the modified Res2Net exhibited a higher coefficient of determination (R2) of 0.97364 and adjusted coefficient of determination (R2adj) of 0.97352 on the test images, surpassing the other algorithms. Finally, CBT estimation experiments were conducted by using the YOLO v8s-Res2Net50 algorithm. Nine layers were randomly selected, and their infrared thermal images were input into the algorithm network. The results showed that the ROI could be fully identified, and the mean absolute error (MAE) of estimating CBT was 0.153℃. Thus the proposed deep learning model for CBT estimation can offer an effective automated detection method for assessing CBT in laying hens.

    参考文献
    相似文献
    引证文献
引用本文

严煜,盛哲雅,谷月,衡一帆,周昊博,王树才.非接触式笼养蛋鸡核心体温检测方法[J].农业机械学报,2024,55(8):312-321. YAN Yu, SHENG Zheya, GU Yue, HENG Yifan, ZHOU Haobo, WANG Shucai. Non-contact Core Body Temperature Detection Method for Caged Laying Hens[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(8):312-321.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-16
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-10
  • 出版日期:
文章二维码