陈明方,何朝银,张永霞,梁鸿键,吕玉波,黄良恩.2TPR&2TPS并联机器人结构参数辨识[J].农业机械学报,2023,54(10):421-431.
CHEN Mingfang,HE Chaoyin,ZHANG Yongxia,LIANG Hongjian,LÜ Yubo,HUANG Liang'en.Structural Parametric Identification of 2TPR&2TPS Parallel Robot[J].Transactions of the Chinese Society for Agricultural Machinery,2023,54(10):421-431.
摘要点击次数: 152
全文下载次数: 72
2TPR&2TPS并联机器人结构参数辨识   [下载全文]
Structural Parametric Identification of 2TPR&2TPS Parallel Robot   [Download Pdf][in English]
投稿时间:2023-06-26  
DOI:10.6041/j.issn.1000-1298.2023.10.043
中文关键词:  并联机构  误差分析  参数辨识  改进粒子群优化算法  运动学标定
基金项目:国家自然科学基金项目(51965029)、云南省重大科技专项计划项目(202002AC080001)和国家重点研发计划项目(2018YFB1306103)
作者单位
陈明方 昆明理工大学 
何朝银 昆明理工大学 
张永霞 昆明理工大学 
梁鸿键 昆明理工大学 
吕玉波 昆明理工大学 
黄良恩 昆明理工大学 
中文摘要:并联机器人末端位姿精度对其工作性能影响较大,建立有效的标定算法是提高机器人位姿精度的重要保证。本文以一种2TPR&2TPS并联机构为研究对象,首先对机器人进行运动学分析,采用全微分法得出机器人的误差模型,根据该模型得出机器人结构参数误差与末端位姿误差的量化关系,以及各误差项误差变动对末端位姿误差的影响规律;接着,建立参数辨识模型和标定效果评价函数,验证了参数辨识模型的有效性,再用该模型辨识机器人的结构参数误差;最后,修正运动学模型完成了机器人的误差标定。实验结果显示,标定后机器人的平均位置精度提升68.62%,距离误差均值由7.710mm降至2.350mm,精度提升69.52%,实验结果证明本文的标定算法有效。
CHEN Mingfang  HE Chaoyin  ZHANG Yongxia  LIANG Hongjian  Lü Yubo  HUANG Liang'en
Kunming University of Science and Technology
Key Words:parallel mechanism  error analysis  parameter identification  improved particle swarm optimization algorithm  kinematics calibration
Abstract:The end pose accuracy of parallel robots has a significant impact on their working performance, and establishing effective calibration algorithms is an important guarantee for improving the pose accuracy of robots. A 2TPR&2TPS parallel mechanism was taken as the research object. Firstly, the kinematics of the robot was analyzed, and the error model of the robot was obtained by using the total derivative method. According to the model, the quantitative relationship between the structural parameter error of the robot and the end pose error and the influence law of the error changes of each error item on the end pose error was obtained. Subsequently, a parameter identification model was established based on the improved particle swarm optimization algorithm. The effectiveness of the parameter identification model was verified by setting a set of error values for the identified variables, and comparing the identified values with the set values five times. At the same time, a calibration effect evaluation function was established. Finally, the structural parameter error of the robot was identified with the parameter identification model, and the kinematics model of the robot was modified with the identified error value, and the error calibration of the robot was completed. The calibration effect evaluation function established was used to analyze the calibration effect. The experimental results showed that the average position accuracy of the robot after calibration was improved by 68.62%, and the average distance error was reduced from 7.710mm to 2.350mm, with an accuracy improvement of 69.52%. The experimental results proved that the calibration algorithm was effective.

Transactions of the Chinese Society for Agriculture Machinery (CSAM), in charged of China Association for Science and Technology (CAST), sponsored by CSAM and Chinese Academy of Agricultural Mechanization Science(CAAMS), started publication in 1957. It is the earliest interdisciplinary journal in Chinese which combines agricultural and engineering. It always closely grasps the development direction of agriculture engineering disciplines and the published papers represent the highest academic level of agriculture engineering in China. Currently, nearly 8,000 papers have been already published. There are around 3,000 papers contributed to the journal each year, but only around 600 of them will be accepted. Transactions of CSAM focuses on a wide range of agricultural machinery, irrigation, electronics, robotics, agro-products engineering, biological energy, agricultural structures and environment and more. Subjects in Transactions of the CSAM have been embodied by many internationally well-known index systems, such as: EI Compendex, CA, CSA, etc.

   下载PDF阅读器