刘翠玲,李佳琮,孙晓荣,殷莺倩,张善哲,吴静珠.基于荧光光谱结合宽度学习的白菜农药残留量检测方法[J].农业机械学报,2023,54(10):198-204.
LIU Cuiling,LI Jiacong,SUN Xiaorong,YIN Yingqian,ZHANG Shanzhe,WU Jingzhu.Detection of Pesticide Residues in Cabbage Based on Fluorescence Spectroscopy Combined with Broad Learning[J].Transactions of the Chinese Society for Agricultural Machinery,2023,54(10):198-204.
摘要点击次数: 200
全文下载次数: 71
基于荧光光谱结合宽度学习的白菜农药残留量检测方法   [下载全文]
Detection of Pesticide Residues in Cabbage Based on Fluorescence Spectroscopy Combined with Broad Learning   [Download Pdf][in English]
投稿时间:2023-04-04  
DOI:10.6041/j.issn.1000-1298.2023.10.019
中文关键词:  白菜  农药残留  三维荧光光谱  宽度学习系统  波段选择
基金项目:北京市自然科学基金项目(4222043)、国家自然科学基金项目(61807001)和北京工商大学2023研究生科研能力提升计划项目
作者单位
刘翠玲 北京工商大学 
李佳琮 北京工商大学 
孙晓荣 北京工商大学 
殷莺倩 北京工商大学 
张善哲 北京工商大学 
吴静珠 北京工商大学 
中文摘要:为了高效监控蔬菜中农药残留情况,利用荧光光谱技术检测白菜中吡虫啉农药残留量。首先通过三维荧光光谱确定400nm为吡虫啉的最佳激发波长;其次通过分析6种预处理算法和2种降维算法,分别选出多元散射校正(Multiple scattering calibration, MSC)和无信息变量消除(Uninformative variable elimination, UVE)作为最佳的预处理与波长选择方法;宽度学习系统(Broad learning system, BLS)用于荧光光谱建模,同时与偏最小二乘回归(Partial least squares regression, PLSR)、支持向量机(Support vector machine, SVM)和深度极限学习机(Deep extreme learning machines, DELM)等经典模型进行比较。结果显示BLS模型获得了最佳吡虫啉含量预测效果,测试集决定系数R2p达0.949,均方根误差(Root mean square error, RMSE)达0.347mg/kg。表明了荧光光谱技术结合宽度学习预测农药残留量的可行性,可以为在线检测农药残留量系统的开发提供理论依据。
LIU Cuiling  LI Jiacong  SUN Xiaorong  YIN Yingqian  ZHANG Shanzhe  WU Jingzhu
Beijing Technology and Business University
Key Words:cabbage  pesticide residue  three-dimensional fluorescence spectroscopy  broad learning system  wave selection
Abstract:In order to efficiently monitor the pesticide residues in vegetables, a detection method of pesticide residue content of imidacloprid in cabbage on fluorescence spectroscopy was proposed. Firstly, 400nm was determined of as the optimal excitation wavelength of imidacloprid by three-dimensional fluorescence spectroscopy. Afterwards, six pre-processing algorithms and two dimensionality reduction algorithms were analyzed. Multiple scattering calibration (MSC) and uninformative variable elimination (UVE) were selected as the best pre-processing and wavelength selection methods, respectively. Finally, the broad learning system (BLS) was used for fluorescence spectroscopy modeling and compared with classical models such as partial least squares regression (PLSR), support vector machine (SVM), and deep extreme learning machines (DELM). The results showed that the BLS model obtained the best prediction of imidacloprid content. The test set coefficient of determination (R2p) reached 0.949 and the root mean square error (RMSE) reached 0.347mg/kg. The research result showed that fluorescence spectroscopy combined with BLS was feasible to identify pesticide residue content, and it can provide a theoretical basis for the development of online detection system for pesticide residue content.

Transactions of the Chinese Society for Agriculture Machinery (CSAM), in charged of China Association for Science and Technology (CAST), sponsored by CSAM and Chinese Academy of Agricultural Mechanization Science(CAAMS), started publication in 1957. It is the earliest interdisciplinary journal in Chinese which combines agricultural and engineering. It always closely grasps the development direction of agriculture engineering disciplines and the published papers represent the highest academic level of agriculture engineering in China. Currently, nearly 8,000 papers have been already published. There are around 3,000 papers contributed to the journal each year, but only around 600 of them will be accepted. Transactions of CSAM focuses on a wide range of agricultural machinery, irrigation, electronics, robotics, agro-products engineering, biological energy, agricultural structures and environment and more. Subjects in Transactions of the CSAM have been embodied by many internationally well-known index systems, such as: EI Compendex, CA, CSA, etc.

   下载PDF阅读器