基于宏微结合的田间作业机器人路径规划
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(52072407)


Path Planning of Field Robot Based on Macro-micro Combination
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    农业机器人对推动农业现代化加速变革和实现智慧农业有重要作用。高精度定位技术是保障机器人安全高效完成各类作业的基础,而作业路径准确规划是实现农业场景下导航的核心。针对田间作业机器人复杂环境下因测绘误差与局部障碍进而造成作物损伤率较大这一问题,本文提出一种基于宏微结合的路径规划算法,该算法首先基于作业区域宏观测绘信息生成全局静态作业路径,同时利用雷达传感器对机器人局部作业环境进行实时动态监测进而生成局部动态最优路径,将全局静态路径与局部动态路径进行有机融合以实现作业路径优化修正,保障田间作业的顺利进行,最终应用MPC算法控制机器人对规划后的路径进行追踪。经试验验证,当机器人田间作业两侧安全距离分别为0.2、0.1m时,本算法可将作业过程中平均作物损伤率由3.4058%、1.2763%降低到0.6772%、0.1889%,保证了机器人作业的安全可靠,为大田稳产条件下的高效作业奠定基础。同时,本算法提升了精准农业要求下田间作业精度,对实现农业高产高效高质目标有重要意义。

    Abstract:

    Agricultural robot plays an important role in accelerating transformation of agricultural modernization and achieving intelligent agriculture. Field positioning and navigation technology is the foundation for ensuring the safe and efficient completion of various agricultural tasks by robots, and combining high-precision positioning information of robots to achieve efficient planning of work paths is the technical core of field positioning and navigation. A path planning algorithm based on macro-micro integration was proposed. Firstly, the algorithm generated a global static work path based on the macro mapping information of the operation area. While implementing robot operations, various radar sensors were used to dynamically monitor the micro work environment and path information of the robot in real time. Finally, path tracking algorithms such as MPC were applied to real-time process local and global work environment information to achieve real-time job path optimization and correction to ensure the smooth progress of field work. Experimental verification showed that when the adjustable distances on both sides of the robot during field operations were 0.2m, 0.1m respectively, the algorithm can reduce the average crop compaction rate during the operation process from 3.4058% and 1.2763% to 0.6772% and 0.1889%. Meanwhile, the algorithm improved the precision of field operations under the requirements of precision agriculture and had important significance for achieving the goal of high yield, efficiency, and quality in agriculture.

    参考文献
    相似文献
    引证文献
引用本文

郑路,张啸,王建国,吴悦,李海涛.基于宏微结合的田间作业机器人路径规划[J].农业机械学报,2023,54(9):13-26. ZHENG Lu, ZHANG Xiao, WANG Jianguo, WU Yue, LI Haitao. Path Planning of Field Robot Based on Macro-micro Combination[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(9):13-26.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-14
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-09-10
  • 出版日期:
文章二维码