基于RSM和GA-BP-GA优化的油茶籽仿真参数标定
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2019YFD1002401)、国家自然科学基金项目(31971805)和陕西省重点研发计划项目(2019ZDLNY02-04)


Calibration of Simulation Parameters of Camellia oleifera Seeds Based on RSM and GA-BP-GA Optimization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    采用逆向工程技术,在EDEM软件中建立了油茶籽离散元模型;通过物理试验测得油茶籽堆积角为(27.93±1.46)°,以及密度、碰撞恢复系数和油茶籽-钢板间静摩擦因数的参数区间,采用Plackett-Burman Design和最陡爬坡试验筛选显著性因素;以堆积角为响应值,采用响应面(RSM)和机器学习对显著性参数进行优化和对比。结果显示,基于遗传算法(GA)的BP人工神经网络的预测能力与稳定性优于随机森林、支持向量机和BP人工神经网络;采用GA寻优得到油茶籽-油茶籽间静摩擦因数为0.443、油茶籽-钢板间静摩擦因数为0.319、油茶籽-油茶籽间滚动摩擦因数为0.063,测得仿真堆积角为27.63°,与实际堆积角的相对误差为1.09%;采用RSM得到油茶籽-油茶籽间静摩擦因数为0.383、油茶籽-钢板间静摩擦因数为0.335、油茶籽-油茶籽间滚动摩擦因数为0.064,测得仿真堆积角为26.99°,相对误差为3.33%。研究结果表明,在油茶籽参数标定中,GA-BP-GA的参数优化效果优于RSM,并且该研究所建油茶籽模型与参数标定结果可用于离散元仿真。

    Abstract:

    In the study of production and processing technologies such as mechanical shelling, sowing and planting of Camellia oleifera seeds, due to the lack of accurate discrete element simulation models and parameters, the simulation and actual errors of design equipment are large. Reverse engineering techniques were used to establish a discrete element model of Camellia oleifera seeds in EDEM software. 〖JP2〗Through physical tests, the angle of repose (AOR) of Camellia oleifera seeds was measured to be (27.93±1.46)°. The parameter intervals of density, collision recovery coefficient and static friction coefficient between camellia seed and plate were measured. The discrete model parameters of Camellia oleifera seeds were filtered by using the Plackett-Burman Design to obtain the parameters that had a significant impact on the AOR. The path of steepest ascent method was carried out to determine the optimal value range of the parameters. The central composite design (CCD) response surface method (RSM) and machine learning were used to establish the regression models involving the AOR and the significant parameters. The results showed that the predictive ability and stability of BP artificial neural network based on genetic algorithm (GA) were better than that of random forest, support vector regression and BP artificial neural network. GA optimization was used to obtain the static friction coefficient between seeds, which was 0.443, the static friction coefficient between seeds and steel plates was 0.319, and the rolling friction coefficient between seeds was 0.063. The simulated AOR was measured to be 27.63°, and the relative error from the actual AOR was 1.09%. RSM optimization was used to obtain the static friction coefficient between seeds, which was 0.383, the static friction coefficient between seeds and steel plates was 0.335, and the rolling friction coefficient between seeds was 0.064. The simulated AOR was measured to be 26.99°, and the relative error from the actual AOR was 3.33%. The results showed that GA-BP-GA had better parameter optimization effect than RSM in the parameter calibration of Camellia oleifera seeds. Moreover, the built model and parameter calibration results of Camellia oleifera seeds can be used for discrete element simulation research.

    参考文献
    相似文献
    引证文献
引用本文

丁辛亭,李凯,郝伟,杨其长,闫锋欣,崔永杰.基于RSM和GA-BP-GA优化的油茶籽仿真参数标定[J].农业机械学报,2023,54(2):139-150.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-11-05
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-12-26
  • 出版日期: