基于CS-CatBoost的温室番茄水分胁迫预测模型
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2019YFD1001903)和中央高校基本科研业务费项目(2021TC031)


Crop Water Stress Index Prediction Model of Greenhouse Tomato Based on CS-CatBoost
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为预测温室番茄水分胁迫程度,利用传感器获取温室内部环境信息,包括空气温度(Ta)、空气相对湿度(Rh)、基质湿度(Hs)、光照强度(Li)、二氧化碳浓度(CO2)和基质温度(Ts),通过气象站获取温室外部环境信息,包括风速(Ws)、室外相对湿度(Rho)和室外空气温度(Tao)。根据以上9个参数建立基于布谷鸟搜索优化CatBoost(CS-CatBoost)的温室番茄水分胁迫指数(CWSI)预测模型。通过梯度提升算法计算特征权重并进行筛选,对比不同输入特征数量下CS-CatBoost算法的性能。同时,与原CatBoost模型、CS-LightGBM模型和CS-RF模型进行对比分析。结果表明,当模型的输入参数数量为7时,CS-CatBoost与CatBoost、CS-LightGBM、CS-RF相比,RMSE降低了0.0123、0.0118和0.0311,MAE下降了0.0066、0.0075和0.0208,MAPE下降了0.963、1.1232和3.0892,R 2则提高了0.0177、0.0165和0.0767。在模型输入参数数量为其他值时,CS-CatBoost模型的预测能力均优于其他3种模型。该研究证明了CS-CatBoost模型拥有较好的预测能力与泛化能力,可为温室番茄种植的水分胁迫程度分析提供一种新的策略,从而提高农业水资源的利用效率。

    Abstract:

    In order to predict the degree of water stress of tomato in greenhouse, sensors were used to obtain the internal environmental information of greenhouse, including air temperature (Ta), air relative humidity (Rh), substrate humidity (Hs), light intensity (Li), carbon dioxide concentration (CO2) and substrate temperature (Ts). The wind speed (Ws), outdoor relative humidity (Rho) and outdoor air temperature (Tao) of the greenhouse were obtained from local weather station. According to the above nine parameters, the crop water stress index (CWSI) prediction model of greenhouse tomato was established based on CS-CatBoost. The feature weights were calculated and screened by the gradient lifting algorithm. The performance of the CS-CatBoost algorithm under different input feature numbers was compared with the original CatBoost model, CS-LightGBM model and CS-RF model. The results showed that when the number of input parameters of the model was 7, compared with CatBoost, CS-LightGBM and CS-RF, the RMSE was decreased by 0.0123, 0.0118 and 0.0311, MAE was decreased by 0.0066, 0.0075 and 0.0208, MAPE was decreased by 0.9630, 1.1232 and 3.0892, while R 2 was increased by 0.0177, 0.0165 and 0.0767. When the number of other parameters as the model input, CS-CatBoost models prediction ability was superior to the other three model. The research result proved that the CS-CatBoost model had better prediction ability and generalization ability, which provided a strategy for water stress degree analysis of greenhouse tomato cultivation, thereby improving the utilization efficiency of agricultural water resources.

    参考文献
    相似文献
    引证文献
引用本文

李 莉,陈浩哲,赵奇慧,马德新,孟繁佳.基于CS-CatBoost的温室番茄水分胁迫预测模型[J].农业机械学报,2021,52(S0):427-433. LI Li, CHEN Haozhe, ZHAO Qihui, MA Dexin, MENG Fanjia. Crop Water Stress Index Prediction Model of Greenhouse Tomato Based on CS-CatBoost[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(S0):427-433.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-07-18
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-11-10
  • 出版日期: 2021-12-10
文章二维码