考虑时空变异特性的温室多环境因子优化策略
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

中国博士后特别项目(2018T110457)


Optimization Strategy of Greenhouse Multiple Environmental Factors Considering Temporal and Spatiotemporal Variability
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文考虑温室环境的时空变异特性,通过构建温室建筑计算流体力学(CFD)模型,结合带精英策略的非支配遗传算法(NSGA-Ⅱ),建立C++-Fluent联合优化框架,实现温室环境因子的多目标、高效率优化。CFD温室模型在江苏省镇江市的一处温室进行实地验证;迭代优化算法由C++实现并通过超级计算机提高计算效率;优化目标包括作物区域温度场、二氧化碳浓度分布以及控制温室风机能耗。研究结果表明,CFD温度场和速度场与监测点实验值吻合度高,平均相对误差分别为4.9%和7.05%;为获得某场景下作物生长温度场、二氧化碳浓度分布的最优值且维持温室风机的低能耗,温室湿帘入口温度为[296.6K,302K],风机出口风速为[2.9m/s,5.5m/s]。此时作物区域的温度场、二氧化碳浓度分布及风机能耗均在最优范围,有助于提高作物产量,降低温室能耗;超级计算机Linux系统下开发的优化方案计算效率比个人计算机大幅提高,计算时长缩短约88.09%。本文所提策略充分考虑温室环境的时空变化特性,对温室内多环境因子实现多目标、高效率优化。

    Abstract:

    Considering the temporal and spatial variation characteristics of greenhouse environment, the C++-Fluent joint optimization framework was established by constructing the greenhouse building computational fluid dynamics (CFD) model and combining the non dominated genetic algorithm with elite strategy (NSGA-Ⅱ), so as to realize the multi-objective and high-resolution optimization of greenhouse environmental factors. The CFD greenhouse model was verified by a greenhouse in Zhenjiang City, Jiangsu Province. The iterative optimization algorithm was implemented in C++ and the computing efficiency was improved by supercomputer. The optimization objectives included crop regional temperature field, carbon dioxide distribution and control of greenhouse fan energy consumption. The results showed that the CFD temperature field and velocity field were in good agreement with the experimental values at the monitoring points, and the average relative errors were 4.9% and 7.05% respectively. In order to obtain the optimal value of crop growth temperature field and carbon dioxide distribution in a certain scene and maintain low energy consumption of greenhouse fan, the greenhouse wet curtain temperature was [296.6K, 302K], and the fan outlet wind speed was [2.9m/s, 5.5m/s]. At this time, the temperature field, carbon dioxide distribution and fan energy consumption in the crop area were in the optimal range, which helped to improve crop yield and reduce greenhouse energy consumption. The computing efficiency of the optimization scheme developed under the supercomputer Linux system was significantly higher than that of the personal computer, and the computing time was shortened by about 88.09%. The strategy proposed fully considered the temporal and spatial variation characteristics of greenhouse environment and realized high-resolution and high-efficiency optimization of multiple environmental factors in greenhouse, which can provide a basis for the selection of greenhouse environmental parameters suitable for crop growth.

    参考文献
    相似文献
    引证文献
引用本文

李康吉,张世通,孟凡跃,毛罕平.考虑时空变异特性的温室多环境因子优化策略[J].农业机械学报,2021,52(11):343-350. LI Kangji, ZHANG Shitong, MENG Fanyue, MAO Hanping. Optimization Strategy of Greenhouse Multiple Environmental Factors Considering Temporal and Spatiotemporal Variability[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(11):343-350.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-11-18
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-11-10
  • 出版日期: