激波传播与云空化脱落过程脉动冲击研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(51806082、51879120)、江苏省“双创博士”项目(18SCBS016)、中国博士后科学基金面上项目(2020M671363)、江苏省博士后科研资助计划项目(2020Z298)和中国博士后科学基金特别资助项目(2021T140282)


Investigation on Shock Wave Propagation and Impact of Cloud Cavitation Shedding
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    使用实验与数值模拟相结合的方法对NACA0015水翼的云空化流动和压力脉动进行了研究,分析了激波主导下的云空化脱落机理和脉动冲击。实验在空化水洞中进行,采用压力传感器记录监测点压力脉动信息,并使用高速摄像技术捕获空泡形态。通过数值计算,捕捉对应监测点的压力脉动情况,并基于FBM-DCM方法对SST湍流模型进行修正,获取了非定常流动过程中的空化特性。结果表明:可压缩修正后的SST模型很好地捕捉到了大尺度云空化溃灭后形成的激波在吸力面上的传播过程。空泡覆盖区域,压力处于较低水平。激波在传播过程中会导致当地压力的回升。NACA0015水翼在水温33℃、攻角12°、空化数1.4下,模拟得到激波在46%弦长和32%弦长之间的传播速度约为11.53m/s,实验得到激波在该区域传播速度为11.31m/s,二者在数值上较为接近。

    Abstract:

    Cavitation is a complex phenomenon, and the generation of shock waves is closely associated with cavitation compressibility. With the aim to explain the mechanism of cloud cavitation shedding and shock wave propagation, experiments were carried out in a cavitation tunnel. Pressure pulsation was recorded by pressure sensors and cavity structures were captured by high-speed cameras. The filter-based density correction (FBM-DCM) method was used to modify the shear stress transfer (SST) turbulence model. The unsteady cavitation feature was obtained by simulation. It was found that numerical calculation was highly consistent with the experiment results. Moreover, the shock wave formed by the collapse of the large cloud cavity and the pressure pulsation were captured. During the process of cavity structure evolution, the vorticity was relatively low and uniform in the area covered by attached cavity. It was unstable for the flow in the region filled with cavitation clouds. After the cavitation clouds were pulled away from the wall, they would be transported downstream pushed by the mainstream. When large-scale cavitation clouds collapsed to a minimum volume at the vast room behind the trailing edge of hydrofoil, they released pressure pulse of high amplitude. Overall, in the attached cavitation area, the pressure value was at a low level and rose when the shock wave arrived. When the water temperature was 33℃, the angle of attack was 12°and the cavitation number was 1.4, the propagation velocity of the shock wave between 46% and 32% of chord length was about 11.53m/s in the simulation, and it was similar to 11.31m/s obtained by experiment.

    参考文献
    相似文献
    引证文献
引用本文

邱宁,朱涵,周文杰,潘中永,袁寿其,刘祥.激波传播与云空化脱落过程脉动冲击研究[J].农业机械学报,2021,52(11):135-143. QIU Ning, ZHU Han, ZHOU Wenjie, PAN Zhongyong, YUAN Shouqi, LIU Xiang. Investigation on Shock Wave Propagation and Impact of Cloud Cavitation Shedding[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(11):135-143.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-12-09
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-11-10
  • 出版日期: