秸秆多级连续冷辊压成型参数优化与试验
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2016YFD0701300)


Optimization and Experiment on Straw Multi-stage Continuous Cold Roll Forming for Molding Parameters
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为得到秸秆多级辊压成型机压缩较低含水率玉米秸秆时的最优成型参数,探索成型参数对成型结果的影响规律,基于Design-Expert BBD(Box-Behnken Design)试验设计方法及原理,以玉米秸秆含水率、玉米秸秆破碎长度和成型机末级辊转速为试验因素,以成型块回弹率、密度和成型能耗为试验指标,采用三因素三水平响应面分析方法,分别建立了各因素与成型块回弹率、密度、成型能耗之间的数学模型,并分析了各因素显著交互作用对试验指标的影响规律。结果表明:成型机在压缩玉米秸秆时,各试验因素对成型块回弹率的贡献率从大到小依次为:末级辊转速、破碎长度、含水率;各试验因素对成型块密度的贡献率从大到小依次为:破碎长度、末级辊转速、含水率;各试验因素对成型能耗的贡献率从大到小依次为:末级辊转速、破碎长度、含水率。在末级辊转速为1.07r/min,含水率为21.5%~25.0%,破碎长度为64~108mm时,可获得成型块回弹率小于7.0%,成型块密度大于350kg/m3,成型能耗小于16.0kW·h/t;参数优化得到最优成型参数为:含水率24.26%、破碎长度73.25mm、末级辊转速1.07r/min,此时成型块回弹率为6.32%,成型块密度为375.6kg/m3,成型能耗为15.89kW·h/t。 研究结果可为秸秆多级连续冷辊压成型提供理论依据和技术支撑。

    Abstract:

    Aiming to obtain the optimal molding parameters of the straw multi-stage roll forming machine when compressing corn stalks with lower moisture content, and explore the influence of molding parameters on molding results, based on the Design-Expert Box-Behnken Design (BBD) experimental design method and principle. Taking the moisture content, crushing length and the final roller speed of the forming machine as experimental factors, and the rebound rate, density and the molding energy consumption as the test indicators, using the three-factor and three-level response surface analysis method, the mathematical models between each factor and the rebound rate, density and the molding energy consumption were established respectively. The influence of the significant interaction of various factors on the test indicators was analyzed. The results showed that when the forming machine compressed corn stalks, the contribution rate of each test factor to the rebound rate from large to small was: the final roller speed, the crushing length, and the moisture content; the contribution rate of each test factor to the density from large to small was: the crushing length, the final roller speed, and the moisture content; the contribution rate of each test factor to the molding energy consumption from large to small was: the final roller speed, the crushing length, and the moisture content. When the final roller speed was 1.07r/min, the moisture content was 21.5%~25.0%, and the crushing length was 64~108mm, the rebound rate was less than 7.0%, the density was greater than 350kg/m3, and the molding energy consumption was less than 16.0kW·h/t; the optimal molding parameters obtained by parameter optimization were: the moisture content was 24.26%, the crushing length was 73.25mm, the final roller speed was 1.07r/min, at this time, the rebound rate was 6.32%, and the density was 375.6kg/m3, the molding energy consumption was 15.89kW·h/t. This research can provide a theoretical basis and technical support for multi-stage continuous cold roll forming of straw.

    参考文献
    相似文献
    引证文献
引用本文

丁宁,李海涛,闫安,刘平义,韩鲁佳,魏文军.秸秆多级连续冷辊压成型参数优化与试验[J].农业机械学报,2021,52(10):196-202,290. DING Ning, LI Haitao, YAN An, LIU Pingyi, HAN Lujia, WEI Wenjun. Optimization and Experiment on Straw Multi-stage Continuous Cold Roll Forming for Molding Parameters[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(10):196-202,290.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-11-28
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-12-20
  • 出版日期: