咸淡轮灌和生物炭对滨海盐渍土水盐运移特征的影响
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(51879071)和国家重点研发计划项目(2016YFC0400200)


Effects of Cycle Irrigation with Brackish and Fresh Water and Biochar on Water and Salt Transports of Coastal Saline Soil
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为利用滨海地区微咸水改良盐渍土,进行了不同咸淡水轮灌(淡淡、淡咸、咸淡、咸咸)和施用生物炭(0、15、30t/hm2)的室内入渗试验,探讨了咸淡轮灌和生物炭施用下滨海盐渍土水盐运移过程。结果表明:滨海盐渍土水分运动主要受初始入渗水质的影响,先咸后淡的轮灌方式更有利于土壤水分入渗,入渗速率增加了8.2%~46.9%,并小幅提高了土壤含水率;生物炭可促进咸淡轮灌下的水分运移,增加了相同时间内的湿润锋距离、累计入渗量、入渗速率及入渗后的土壤含水率,添加量为15t/hm2时入渗增益最佳,入渗速率提高了3.5%~22.0%;淡咸和咸淡处理的土壤含盐量均低于咸咸处理,脱盐率和脱盐区深度系数更高,咸淡处理可增加脱盐率,而淡咸处理可提高脱盐区深度系数;生物炭有利于咸淡轮灌下的土壤盐分淋洗,脱盐率和脱盐区深度系数分别提高了9.1%~15.0%和1.1%~7.5%,并增加了Ca2+和Mg2+含量,促进Na+淋洗,进而降低了微咸水利用风险,但在30t/hm2时盐分淋洗效果有所减弱。研究表明,添加15t/hm2生物炭配合微咸水-淡水轮灌能够改善滨海盐渍土的入渗特性、持水能力和盐分分布,可为该区盐渍土和微咸水开发利用提供参考。

    Abstract:

    For saline soil reclamation using brackish water in coastal areas, indoor infiltration tests were carried out to investigate the water and salt transport processes of coastal saline soil under different cycle irrigations with brackish and fresh water and biochar application. There were four cycle irrigation treatments, that was, continuous freshwater irrigation (fresh-fresh), began with freshwater irrigation then brackish water irrigation (fresh-brackish), began with brackish irrigation and then freshwater irrigation (brackish-fresh), continuous brackish water irrigation (brackish-brackish). The biochar application rates were 0t/hm2, 15t/hm2 and 30t/hm2, respectively. According to the results, the water movement of coastal saline soil was mainly affected by the initial infiltration water quality. The cycle irrigation of brackish-fresh was more beneficial to soil water infiltration and increased the infiltration rate by 8.2%~46.9%. The cycle irrigation of brackish-fresh also slightly improved soil moisture content. Biochar promoted water infiltration under cycle irrigation with brackish and fresh water, and increased wetting front distance, accumulated infiltration amount, infiltration rate, and soil moisture content. Biochar application at 15t/hm2 was most conducive to soil water transport, increasing the infiltration rate by 3.5%~22.0%. The soil salt content of fresh-brackish and brackish-fresh was lower than that of brackish-brackish, while the desalinization rate and depth coefficient were higher. The cycle irrigation of brackish-fresh increased the desalinization rate, and the cycle irrigation of fresh-brackish could increase the desalinization depth. The addition of biochar was beneficial to soil salt leaching under cycle irrigation, which increased the desalination rate and desalination depth coefficient by 9.1%~15.0% and 1.1%~7.5%, respectively. Biochar also increased the content of Ca2+ and Mg2+, which promoted Na+ leaching and mitigated the risk of brackish water irrigation. The effect of biochar on salt leaching was limited when the biochar application rate was increased to 30t/hm2. The research result showed that 15t/hm2 biochar combined with cycle irrigation with brackish and fresh water improved infiltration characteristics, water holding capacity, and salt distribution of coastal saline soil, which could provide references for the development and utilization of saline soil and brackish water in coastal regions.

    参考文献
    相似文献
    引证文献
引用本文

黄明逸,张展羽,徐辉,翟亚明,王策,朱成立.咸淡轮灌和生物炭对滨海盐渍土水盐运移特征的影响[J].农业机械学报,2021,52(1):238-247. HUANG Mingyi, ZHANG Zhanyu, XU Hui, ZHAI Yaming, WANG Ce, ZHU Chengli. Effects of Cycle Irrigation with Brackish and Fresh Water and Biochar on Water and Salt Transports of Coastal Saline Soil[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(1):238-247.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-09-15
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-01-10
  • 出版日期: