阀用超磁致伸缩致动器弓张结构静、动态建模与优化
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(51275525)


Static and Dynamic Property Optimization Design on Bow-type Structure of Giant Magnetostrictive Actuator for Valve
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    Abstract:

    A compact giant magnetostrictive actuator with bowtype amplifier structure was designed to meet the driving needs of largeflow electrohydraulic servo valve. Based on mechanics and vibration theory, the static and dynamic models of this structure were established. The influence of the dimensional parameters towards its static and dynamic performance was analyzed, and it was concluded that its static and dynamic properties were mutually restrictive. Combining with the application requirements of giant magnetostrictive actuator in electrohydraulic servo valve, the multiobjective optimization design was conducted for the bowtype structure, and then the static and dynamic models were validated by the finite element analysis. Finally, the giant magnetostrictive actuator with bowtype displacement amplifier structure was prototyped to test its static and dynamic properties. The results showed that the amplification ratio of this structure was fluctuated from 8.13 to 8.72, the maximum output displacement was 107.9μm, and the natural frequency reached 168Hz. The results were basically in consistent with the theoretical models. Compared with the performance before optimization, the natural frequency was increased by 55.6% when the requirement of the static magnification was met. The actuator designed can basically meet the driving requirements of servo valve, which proved that the optimized design method was effective.

    参考文献
    相似文献
    引证文献
引用本文

何忠波,郑佳伟,薛光明,荣 策,柏 果.阀用超磁致伸缩致动器弓张结构静、动态建模与优化[J].农业机械学报,2018,49(9):397-405.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-05-29
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-09-10
  • 出版日期: 2018-09-10