基于纸质微流控芯片的农药检测系统
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

“十二五”国家科技支撑计划项目(2014BAD08B03)、国家自然科学基金重点项目(61233006)、国家自然科学基金项目(31671584)、江苏省农业科技自主创新资金项目(CXC1571033—02)和江苏省高校优势学科建设工程项目(苏财教(2014)37号)


Detection System for Pesticides with Paper-based Microfluidic Chip
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对当前农药检测手段仪器复杂、成本昂贵等问题,提出了一种基于纸质微流控农药检测方法。设计了具有自动进样、混合反应、电化学检测等功能的纸质微流控芯片,采用石墨碳、Ag/AgCl材料以及结合化学交联法制备了环状结构的丝网印刷酶电极,并利用循环伏安法对制备的酶电极进行了电化学表征,构建了一套基于酶抑制法的集成酶电极纸质微流控农药检测系统。最后建立了酶抑制率与对硫磷浓度的数学模型,并测试了酶电极的性能。实验结果表明,酶电极具有良好的制备重复性、稳定性和线性度。抑制率与对硫磷浓度的负对数在 1.0×10-7~1.0×10-5g/mL范围内呈良好的线性关系,线性回归方程为:I=158.82+21.11lgC,R2为0.993,最低检出限为3.3×10-8g/mL。所制备的酶电极微流控传感器抗干扰性较强,对对硫磷农药具有一定的选择性。加标回收率范围在95.8%~115.0%之间。

    Abstract:

    In order to solve the problems relating to pesticides detection with the use of complex instruments in terms of high cost, tedious operation and low degree of automation, a new method for pesticides detection with paper-based microfluidic chip was provided. The paper-based microfluidic chip was designed and developed with automatic sample injection, hybrid reaction and electrochemical detection. Subsequently, the enzyme electrode of ring structure was prepared by chemical crosslinking method using graphite carbon and Ag/AgCl materials and then characterized with electrochemistry cyclic voltammetry (CV). The integrated enzyme electrode of the paper-based microfluidic detection system for pesticides was built based on enzyme inhibition mechanism. Finally, the linear model between inhibition rate and parathion pesticides concentration was set up and the performance of the enzyme electrode was tested. The results showed that the prepared enzyme electrode was of good repeatability, linearity and stability. Furthermore, a linear relationship was displayed between inhibition rate and parathion pesticides, which was represented by the equation I=158.82+21.11lgC with good linear range of 1.0×10-7g/mL~1.0×10-5g/mL. The determination coefficient obtained was 0.993 and the corresponding limit of detection was 3.3×10-8g/mL. The enzyme electrode integrated on the paper-based microfluidic chip was robust with parathion pesticides which can not be interfered with other pesticides and substance with standard addition recovery rate of 95.8%~115.0%.

    参考文献
    相似文献
    引证文献
引用本文

毛罕平,左志强,施杰,杨宁,HUANG J S,严玉婷.基于纸质微流控芯片的农药检测系统[J].农业机械学报,2017,48(5):94-100.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-08-13
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-05-10
  • 出版日期: