基于DCP和OCE的无人机航拍图像混合去雾算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

广东省科技计划项目(2015A020224036、2014A020208109)、国家重点研发计划项目(2016YFD0200700)和广东省水利科技创新项目(2016-18)


Algorithm of Defogging UAV’s Aerial Images Based on DCP and OCE
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无人机在雨雾天气下的农田航拍图像退化问题,考虑无人机自身特性,提出了一种基于DCP和OCE的无人机航拍图像混合去雾算法。首先判断原始图像天空区域的存在,利用Canny边缘检测算法对带天空区域的原始图像进行分割并做高斯羽化处理,再采用膨胀和腐蚀等形态学操作进行二值化区域填充,去除非天空区域中对应亮度低的区域,提取天空区域和非天空区域。非天空区域图像采用基于导向滤波的暗通道先验算法去雾。天空区域图像采用基于代价函数的优化对比度算法去雾。本试验分别从主观视觉性和无参考量化评测两方面对100幅航拍图像去雾结果作出评价,试验结果表明,所提算法在对带雾图像去雾后,出现Halo现象的概率相较于DCP算法降低了95%,其综合评测均值指数提高了26%,去雾效果明显,色彩还原度高,没有明显的过渡区域和偏色现象,处理速度可达33帧/s,平均速度相较于DCP算法提高了32%,能满足实时性要求。

    Abstract:

    Aiming at degeneration of UAV’s farmland aerial images in rainy or foggy weather, this article proposed an integrated method based on dark channel prior(DCP) and optimized contrast enhancement(OCE). Firstly, this method identified the existence of sky from the original image, and then segmented and feathered the original images in Gauss method with Canny edge detection algorithm. Secondly, the nonsky regions, where luminance value was low, were filled with binarized dilation and morphological erosion removed. Finally, both nonsky and sky regions within a frame were processed by dark channel and optimized contrast enhancement algorithm respectively. In this research, the effect of the proposed algorithm was evaluated by noreference quantitative assessment using 100 aerial photographing images. The experimental results showed that the possibility of Halo effect, compared to DCP, was reduced by 95% while its comprehensive evaluation average index was raised by 26%. Consequently, without obvious transition region and color cast, the proposed method filtered the fog of the aerial images well and the color reproduction was high. Meanwhile, the average processing efficiency in the proposed algorithm was up to 32% (33 frame per second) higher than classical DCP. Hence, the method could met the realtime requirements.

    参考文献
    相似文献
    引证文献
引用本文

岳学军,王林惠,兰玉彬,刘永鑫,凌康杰,甘海明.基于DCP和OCE的无人机航拍图像混合去雾算法[J].农业机械学报,2016,47(s1):419-425. Yue Xuejun, Wang Linhui, Lan Yubin, Liu Yongxin, Ling Kangjie, Gan Haiming. Algorithm of Defogging UAV’s Aerial Images Based on DCP and OCE[J]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(s1):419-425.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-07-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-10-15
  • 出版日期: 2016-10-15
文章二维码