谢荣盛,汤方平,刘超,石丽建,杨帆,张松.轴伸式出水流道内流场数值模拟分析[J].农业机械学报,2016,47(8):29-34,41.
Xie Rongsheng,Tang Fangping,Liu Chao,Shi Lijian,Yang Fan,Zhang Song.Numerical Simulation Analysis of Internal Flow in S-shaped Outlet Conduit[J].Transactions of the Chinese Society for Agricultural Machinery,2016,47(8):29-34,41.
摘要点击次数: 2414
全文下载次数: 997
轴伸式出水流道内流场数值模拟分析   [下载全文]
Numerical Simulation Analysis of Internal Flow in S-shaped Outlet Conduit   [Download Pdf][in English]
投稿时间:2016-01-15  
DOI:10.6041/j.issn.1000-1298.2016.08.005
中文关键词:  泵装置  出水流道  水力损失  涡角  计算流体动力学  数值模拟
基金项目:国家自然科学基金项目(51376155)、江苏省自然科学基金项目(BK20150457)、扬州大学科技创新培育基金项目(2015CXJ033)和扬州大学研究生科研创新项目(KYLX_1346)
作者单位
谢荣盛 扬州大学 
汤方平 扬州大学 
刘超 扬州大学 
石丽建 扬州大学 
杨帆 扬州大学 
张松 扬州市勘测设计研究院有限公司 
中文摘要:为了探讨在导叶出口剩余环量影响下轴伸式出水流道的水力性能,对不同水力模型及不同叶片安放角下的后置轴伸式泵装置采用全结构化网格进行了数值模拟计算,并与实验结果对比验证模拟结果的可信度。对轴伸式出水流道的水力性能进行了分析,发现轴伸出水流道内部流态受导叶出口剩余环量的影响较大,尤其是对小流量工况。水力损失系数不再是某一常数,而是受流态分布相关的一变量。通过对比不同叶片安放角及不同比转数叶轮的出水流道进口断面平均涡角与水力损失系数关系发现,轴伸式出水流道的水力损失系数与进口断面的平均涡角存在一最优值,本次模拟计算下2副叶轮的最优平均涡角4°~5.3°下的水力损失系数为1.62×10-4m·s/L。通过分析静压与总压沿流线方向的变化趋势明确了小流量工况下环量是引起水力损失的原因,而在大流量工况下流量是引起水力损失的主要原因。
Xie Rongsheng  Tang Fangping  Liu Chao  Shi Lijian  Yang Fan  Zhang Song
Yangzhou University,Yangzhou University,Yangzhou University,Yangzhou University,Yangzhou University and Yangzhou Survey Design Research Institute Co., Ltd.
Key Words:pump device  outlet conduit  hydraulic loss  swirl angle  computational fluid dynamics  numerical simulation
Abstract:In order to research the hydraulic performance of the post position S-shaped shaft outlet conduit under the influence of circulation, the hydraulic performance of the post position S-shaped shaft pumping station under different blade models and different blade angles was simulated with commercial CFD software, and the experiment results were compared with the CFD results. The analysis of hydraulic performance of S-shaped outlet conduct showed that the inner flow field was strongly affected by the residual circulation of guide vane, the coefficient of hydraulic loss was no longer a constant, but a variable which was related to flow field. By comparing the relationship of the average swirl angle in the inlet and the hydraulic loss coefficient of the outlet conduit, it was found that an optimal average swirl angle existed for hydraulic loss coefficient. And the optimal average swirl angle was about 4°~5.3° for two different blades models, and the hydraulic loss coefficient was 1.62×10-4m·s/L. By analyzing the static pressure and total pressure distribution curve, the conclusion below can be drawn: the mainly reason for the hydraulic loss was average swirl angle value at the small discharge, on the contrary the reason for the large hydraulic loss was velocity at large discharge. After the water flowing through the second corner, most of the kinetic energy is recovered. The research result gave a good suggestion for the design and optimization of pump station.

Transactions of the Chinese Society for Agriculture Machinery (CSAM), in charged of China Association for Science and Technology (CAST), sponsored by CSAM and Chinese Academy of Agricultural Mechanization Science(CAAMS), started publication in 1957. It is the earliest interdisciplinary journal in Chinese which combines agricultural and engineering. It always closely grasps the development direction of agriculture engineering disciplines and the published papers represent the highest academic level of agriculture engineering in China. Currently, nearly 8,000 papers have been already published. There are around 3,000 papers contributed to the journal each year, but only around 600 of them will be accepted. Transactions of CSAM focuses on a wide range of agricultural machinery, irrigation, electronics, robotics, agro-products engineering, biological energy, agricultural structures and environment and more. Subjects in Transactions of the CSAM have been embodied by many internationally well-known index systems, such as: EI Compendex, CA, CSA, etc.

   下载PDF阅读器