基于近红外透射光谱的汾阳王酒快速鉴别
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(31271973);高等学校博士学科点专项科研基金资助项目(2010140311003);山西省自然科学基金资助项目(2012011030—3)


Fast Discrimination of Adulterated Fenyangwang Wine Based on Near Infrared Spectroscopy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了快速鉴别掺杂与伪劣清香型白酒,利用近红外(NIR)透射光谱分析技术结合化学计量学方法,以酒精度为53%的汾阳王酒为例,建立BP神经网络和最小二乘支持向量机(LS—SVM)鉴别分析模型。分别采集180份掺杂假冒和120份伪劣汾阳王酒样品的光谱数据,采用Savitzky—Golay(SG)卷积平滑法对光谱数据进行预处理,应用主成分分析(PCA)法分别提取了7个和11个主成分因子,然后采用BP神经网络和最小二乘支持向量机(LS—SVM)对未知样本进行了判别分析。结果表明,经SG—PCA—BP模型鉴别假冒伪劣的准确率均达到100%,SG—PCA—LS—SVM模型鉴别假冒伪劣的准确率分别为84.4%和83.3%。

    Abstract:

    In order to fast discriminate adulterated Fenyangwang wine, taking Fenyangwang wine with 53%vol of alcohol concentration as example, BP neural network and least squares support vector machine (LS—SVM) discriminant analysis models were established based on near infrared spectroscopy combined with chemometric methods. The spectra of 180 and 120 adulterated Fenyangwang wine samples were collected. Savitzky—Golay (SG) convolution smoothing was used to pre-treat the spectral data. Seven and eleven principal component factors were extracted respectively by using principal component analysis (PCA). Then, BP neural network and LS—SVM were used in discriminant analysis of unknown samples. Results showed that the accuracy of SG—PCA—BP neural network was up to 100%. The accuracy values of SG—PCA—LS—SVM models for two experimental groups were 84.4% and 83.3%, respectively.

    参考文献
    相似文献
    引证文献
引用本文

杨国强,张淑娟,赵艳茹.基于近红外透射光谱的汾阳王酒快速鉴别[J].农业机械学报,2013,44(Supp1):189-193. Yang Guoqiang, Zhang Shujuan, Zhao Yanru. Fast Discrimination of Adulterated Fenyangwang Wine Based on Near Infrared Spectroscopy[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(Supp1):189-193.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2013-10-22
  • 出版日期:
文章二维码