doi:10.6041/j.issn.1000-1298.2020.03.015

基于改进 PCNN 的番茄植株夜间图像分割算法

项 荣 张杰兰

(中国计量大学质量与安全工程学院,杭州 310018)

摘要:为实现番茄植株夜间图像分割,设计了一种基于最大类间方差法的改进脉冲耦合神经网络(PCNN)图像分割算法。该算法对传统 PCNN 模型中的链接输入项进行加权处理,在进行图像分割前,先基于最大类间方差 (Otsu)算法获得阈值,再将该阈值赋值给改进 PCNN 模型中的链接输入项权值、突触链接系数 β、链接权放大系数 V_ε和阈值迭代衰减时间常数 α_ε。对 849 幅番茄植株夜间图像进行试验,结果表明,图像分割正确率平均值为 90.43%,平均每幅图像分割时间为 0.994 4 s;输入链接项的加权处理可减少 PCNN 的迭代次数,提高算法的实时性;基于 Otsu 算法可实现改进 PCNN 模型的网络参数自适应设置。基于视觉效果、最大熵及分割正确率这 3 项评价指标的对比分析显示,改进 PCNN 模型的分割效果优于 Otsu 算法和传统 PCNN 模型,实时性优于传统 PCNN 模型。

关键词:番茄植株;夜间图像;脉冲耦合神经网络;图像分割 中图分类号:TP391.41 文献标识码:A 文章编号:1000-1298(2020)03-0130-08 O

Image Segmentation for Tomato Plants at Night Based on Improved PCNN

XIANG Rong ZHANG Jielan

(College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China)

Abstract: In order to realize the image segmentation for tomato plants at night, an improved pulse coupled neural network (PCNN) image segmentation algorithm was designed based on the maximum inter-group variance method. The algorithm weighted the link input in the traditional PCNN model. Before the image segmentation, the threshold was obtained based on the maximum inter-class variance (Otsu) algorithm, and then the threshold was assigned to the weight of the link input, the synaptic link coefficient, the link weight amplification factor and the threshold iterative decay time constant in the improved PCNN model. The results of 849 images of tomato plants at night showed that the average segmentation accuracy was 90.43% and the average segmentation time of one image was 0.9944 s. The weighted processing of the link input could reduce the number of the iterations of improved PCNN and improve the real-time performance of the algorithm. Based on the Otsu algorithm, the network parameters can be set adaptively in the improved PCNN model. The comparative analysis based on the visual evaluation, the maximum entropy and the segmentation accuracy rate showed that the segmentation effect of improved PCNN model was better than those of the Otsu algorithm and the traditional PCNN model, and its real-time performance was also better than that of the traditional PCNN model.

Key words: tomato plants; image at night; pulse coupled neural network; image segmentation

0 引言

果蔬采摘机器人是当前农业自动化领域的研究 热点^[1]。视觉系统是果蔬采摘机器人的重要组成 部分。在现有视觉系统研究中,对果实识别的研究 较多^[2-3],而对茎秆等器官识别的研究较少。在果 蔬自动采摘过程中,果蔬采摘机器人精准识别并准 确避开茎秆等障碍物的干扰,不仅可以有效提高生 产效率,还可避免茎秆等障碍物对机械臂造成损坏。

果蔬植株图像分割是实现果蔬茎秆等器官识别 的前提。当前,果蔬植株图像分割主要聚焦于日间 自然光照条件^[4-5]。为延长果蔬采摘机器人的作业

收稿日期: 2019-07-29 修回日期: 2019-09-03

基金项目:浙江省自然科学基金项目(LY17C130006)

作者简介:项荣(1978—),男,副教授,博士,主要从事采摘机器人与机器视觉检测技术研究,E-mail:xr_rongge@ cjlu.edu.cn

时间,进行果蔬植株夜间图像分割算法研究很有必 要。近年来,国内外学者开展了夜间果蔬图像分割 算法的研究^[6-8]。果蔬植株夜间图像分割的主要难 点^[9-10]:图像采集距离的变化造成光照条件变化、 夜间主动照明在相机视场范围内光照强度不均匀、 枝叶遮挡形成阴影、主动照明形成光斑等。

脉冲耦合神经网络 (Pulse coupled neural network, PCNN)被称为第三代新型神经网络, 以单 个像素为神经元,并在相似的神经元间建立联系,通 过脉冲缩小相似神经元间的距离,使目标和背景区 域邻域中相似像素都能保持很好的连续性[11-12],从 而可使目标像素更完整地被分割。PCNN 的特点非 常适用于果蔬植株夜间图像分割,但传统 PCNN 模 型参数为人工设置,较为繁琐,且 PCNN 迭代次数 多。虽然部分研究应用最大类间方差(Maximum inter-class variance)算法(Otsu 算法)对 PCNN 模型 进行了改进,如胡蓉等^[13]以 Otsu 算法所获阈值作 为 PCNN 模型阈值方程中的初始阈值, 张松等^[14]应 用改进 Otsu 算法作为简化 PCNN 模型迭代过程中 最佳图像分割结果评价方法,但 PCNN 网络参数仍 依赖人工设置,且 PCNN 迭代次数仍较多。为实现 PCNN 模型参数的自适应设置,提高算法运行速度, 本文提出一种基于 Otsu 算法的改进 PCNN 算法,并 将其应用于番茄植株夜间图像分割。

试验设备与方案 1

1.1 试验材料与设备

试验材料为大棚中种植的虹越大番茄植株。夜 间照明系统的照明方式包括双光源对角分布照明和 双光源上下分布照明。图像采集距离分为300、 450、600 mm。光源类型包括:2 W LED 灯、5 W LED 灯、10 W LED 灯、15 W 白炽灯、25 W 白炽灯、18 W 卤素灯、28 W 卤素灯、3 W 荧光灯和 5 W 荧光灯。 为便于选择光源布局和光源种类,参照文献[7],优 化和改进了一种光源支架,如图1所示。通过开关 控制不同光源布局,共可实现3种光源布局方式:四 角布局 CEDF(长×宽为700 mm×600 mm)、双光源 上下布局 AB 和双光源对角布局 CD 或 EF。试验中

图 1 夜间照明系统 Fig. 1 Night lighting system 洗择 AB 和 CD 两种布局进行图像采集。

图像采集时间为 2018 年 7 月 21、25、26 日 19:30-23:00。本研究主要是番茄植株茎秆识别和 定位,使用 Point Grey Research 公司的 Bumblebee2 型双目立体相机进行番茄植株图像采集,后续进行 番茄植株茎秆的定位研究。所采集图像存储为 JPG 格式(640 像素×480 像素)。双目立体相机安装于 三脚架,通过1394 连接线和采集卡 MOGE 1394 与 计算机相连。计算机为 DELL E4300, 内存 2 GB, CPU 为 Intel Core2 Duo P9400, Windows 7 操作系统, 编程环境为 Matlab R2016a。

在温室大棚中分别采用9种不同的光照条件进 行番茄植株夜间图像采集,共采集图像849幅,图像 采集条件及数量如表1所示。

表1 图像采集条件及数量

Tab.1 Image acquisition conditions and quantity

光源类型	图像数量/幅	光源类型	图像数量/幅
LED(2W)	82	卤素灯(18W)	117
LED(5W)	82	卤素灯(28W)	82
LED(10W)	86	荧光灯(3W)	96
白炽灯(15W)	105	荧光灯(5W)	101
白炽灯(25W)	98		

1.2 番茄植株夜间图像分割算法

传统 PCNN 模型由于网络参数较多,针对不同 的图像需经人工多次试验确定参数值。另外,对于 复杂图像,PCNN模型在图像分割过程中迭代次数 多且难以准确确定,使得该模型的有效性和实时性 较差。因此,本文对传统 PCNN 模型进行了改进。

1.2.1 改进 PCNN 模型

PCNN 模型在图像分割过程中迭代次数的确定 是关键问题之一[15],迭代次数过少,则图像分割结 果不准确,迭代次数过多,则实时性较差。另外,由 于决定不同神经元激活时间的关键因素为外部激 励^[16],传统 PCNN 图像分割会由于过大的链接输入 项导致内部活动项过大,从而导致图像相邻迭代分 割时可点火的像素点过多,图像分割易出现欠分割 现象。为确保 PCNN 图像分割正确率的同时,减少 迭代次数,改进 PCNN 的实时性,本文对简化 PCNN 模型进行了改进,将 PCNN 模型中链接输入项进行 加权。改进后的 PCNN 模型如图 2 所示。改进后的 PCNN 数学模型为

$$F_{ij}(n) = S_{ij} \tag{1}$$

$$L_{ij}(n) = w \sum_{kl} W_{ijkl} Y_{kl}(n-1)$$

$$(0 < w < 1)$$
(2)

$$v < 1) \tag{2}$$

$$U_{ij}(n) = F_{ij}(n) (1 + \beta L_{ij}(n))$$
(3)

$$Y_{ij}(n) = \begin{cases} 1 & (U_{ij}(n) \ge E_{ij}(n-1)) \\ 0 & (U_{ij}(n) < E_{ij}(n-1)) \end{cases}$$
(4)

$$E_{ij}(n) = e^{-k}E_{ij}(n-1) + V_E Y_{ij}(n)$$
(5)
中 F_{ij} ——神经元的反馈输入

$$S_{ij}$$
——输入激励信号,即图像像素的灰度
 L_{ii} ——链接输入项

 U_{ii} — —内部活动项

- W_{iii} ———L通道链接权值
- Y_{kl} ——邻域像素点(k,l)的脉冲信息

- k、l----邻域像素图像坐标值
- —突触间链接系数

-动态门限系统的迭代衰减时间常数 α_{r} -

-链接输入项权值

Fig. 2 Improved PCNN model

(a) 原图

Fig. 3 Comparison of segmentation effects before and after weighting of link input

由于图像采集距离的变化以及枝叶遮挡等因素 造成夜间番茄植株图像采集时光照条件变化,进而 导致图像灰度的变化。为实现链接输入项权值的自 适应设置,本文将 Otsu 算法获得的阈值 t 作为权值 设置的依据。同时,为实现权值的精确设置,本文设 计了梯度比值 K,并以 K 作为评价指标,进行权值选 择试验。梯度比值K的计算公式为

$$K = \frac{F_{p2} - F_{p1}}{F_{r2} - F_{r1}} \tag{6}$$

F_{n1}——权值1对应的假阳误分割率 式中 F_{n^2} — —权值2对应的假阳误分割率 F., ——权值1对应的分割正确率 F.,一一权值2对应的分割正确率

当权值1修正到权值2时,若K减小,说明假阳 误分割率变化的幅度比分割正确率变化的幅度小, 因此,权值可继续按该趋势变化;反之,则将权值1 作为选定的权值。表 2 为基于 K 值的权值选择试 验结果。

	表 2	权值选择试验结算			果
Tab. 2	Test	results	of	weight	selectio

			0	
权值	假阴误分	假阳误	分割正确	V
	割率/%	分割率/%	率/%	K
0. 8 <i>t</i>	33.69	19.41	66.31	
0. 9 <i>t</i>	30.95	20.39	69.05	0.3577
t	28.34	21.28	71.66	0.3410
1.1 <i>t</i>	26.69	21.91	73.31	0.3818
1.2 <i>t</i>	25.21	22.43	74.79	0.3514

传统 PCNN 模型的初始阈值为 0, 故在第 1 次 点火前, $E_{ii}(0) = 0$,第1次迭代时, $U_{ii}(1) = S_{ii}$,故 $U_{ii}(1) \ge E_{ii}(0)$,所有神经元全部兴奋点火,均获得 脉冲,输出图像的像素值全为1。之后,动态阈值急

剧增大,神经元处于熄火状态;然后,E_{ii}(n)呈指数 趋势下降,直到 $U_{ii}(2) \ge E_{ii}(1)$,神经元再次点火,

完成一个周期。改进后的 PCNN 模型,第1次迭代

与传统 PCNN 模型一致。在第2次迭代分割时,改

进 PCNN 模型中的 U_{ii}(n)会小于传统 PCNN 模型中

的 U_{ii}(n),所以迭代结果背景像素误分割成前景像 素的情况会减少。因此,在改进 PCNN 模型中,链接 输入项 L_a加入权值后,在每次迭代时比传统 PCNN

的数值小,即将 PCNN 迭代的"跨度"减小。由于番

茄植株夜间图像整体亮度和颜色差异不大,因此,减

性,对2WLED灯CD布局条件下采集的图像进行

分割对比,如图 3 所示。未加入权值的传统 PCNN

模型对图像进行分割,在第4次迭代后得到最佳分 割图像结果,如图 3b 所示。改进的 PCNN 模型对图

像进行分割,在第2次迭代后得到最佳图像分割结

果,如图 3c 所示。由图 3 可知,改进链接输入项使

PCNN 模型在减少迭代次数的同时,确保了 PCNN

为验证改进的 PCNN 模型加入权值后的优越

小迭代"跨度"能够有效预防欠分割现象。

式

b) 链接输入项未加权值 图 3 链接输入项加权前后分割效果对比 由表2可知,权值为*t*时的梯度比值*K*最小,故 可将权值设置为*t*。

在改进后的传统 PCNN 模型中,仍存在 3 个网 络参数需要设置,分别为链接权放大系数 V_{E} 、阈值 迭代衰减时间常数 α_{E} 和突触间链接系数 β_{O} 对于 不同的图像在进行图像处理时,需对 V_{E} 、 α_{E} 和 β 反复试验获取合适的数值,费时费力。故本文进 一步研究了传统 PCNN 模型参数自适应设置的方 法。

1.2.2 传统 PCNN 模型参数自适应设置方法

在 PCNN 模型中,链接权放大系数 V_{E} 决定着神经元点火后的阈值幅度,其大小直接影响着神经元的脉冲发放周期。阈值迭代衰减时间常数 α_{E} 调节 PCNN 模型每次迭代后阈值的衰减量,控制着输出的分辨率和迭代次数, α_{E} 越大,阈值衰减越快,分辨率越低,迭代次数越少; α_{E} 越小,阈值衰减越慢,分辨率越高,迭代次数越多。由式(5)可知, α_{E} 对 E_{ij} 的影响较小。突触间链接系数 β 控制着邻域对中心神经元提前点火的贡献程度, β 越大,神经元的捕捉能力越强,引起脉冲同步发放的范围越大^[17-18]。

实现上述 3 个网络参数的自适应设置将使得 PCNN 模型不再需要人工试验获取参数值。针对传 统 PCNN 模型,本文提出了基于 Otsu 算法的改进 PCNN 模型^[19-20],将 Otsu 算法所获阈值作为参数 V_E 、 α_E 、 β 的值。

使用 Otsu 算法所得阈值将复杂图像中差距大的像素进行初步分类,将阈值赋值给 V_ε、α_ε 和 β。此时,改进 PCNN 模型分割的对象仅为复杂图像中 Otsu 算法无法准确分类的像素,这将大幅度减少 PCNN 模型图像分割的时间。因此,该赋值方式可避免参数选取中人为因素的干扰,同时也可减少图 像分割的计算量。

为验证 Otsu 算法自适应参数设置的合理性,基 于最大熵和视觉效果评价,将其与手动设置的最优 参数进行对比。将 3 个参数手动设置为相同值,且 所设置数值递增变化,将所获图像分割结果进行对比。 算法自适应参数设置所获图像分割结果进行对比。 由于番茄植株夜间图像的 Otsu 阈值范围为[0.2, 0.5],故在手动参数设置时,参数值在[0.1,0.7]范 围内进行设置。以图 3a 为例,当 V_{E} 、 α_{E} 、 β 值相同即 三线重合时,对应熵的结果如图 4 所示。不同参数 对应图像分割结果的熵变化如图 5 所示。由图 4 可 见,当手动设置的参数值递增时,最大熵递减;Otsu 阈值处于手动设置参数值的中间位置,对应最大熵 也处于参数手动设置对应最大熵的中间位置。

为更全面地进行参数手动设置与 Otsu 算法自

Fig. 4 Maximum entropy acquired based on parameters set adaptively and parameters set to the same values manually

适应参数设置图像分割效果对比,在[0.1,0.7]范 围内以 0.1 为步长,分别手动设置 $V_{E} \alpha_{E}$ 和 β 的值, 即每个参数取7个可能值,合计共7³(343)种参数 组合。从343种参数组合对应的图像分割结果中选 出较优的图像分割结果,并将对应的参数及最大熵 与 Otsu 算法获得的阈值及相应的最大熵进行对比。 选出较优的基于手动参数设置获得的分割图像共 77 幅,其对应的参数及最大熵分布如图 5 所示。其 中,大于 Otsu 算法自适应参数设置所获分割结果图 像最大熵的图像有 28 幅,小于 Otsu 算法自适应参 数设置所获分割结果图像最大熵的有 49 幅,即 Otsu 算法参数自适应设置获得的图像分割结果中有超过 一半优于参数手动设置所获得的较优图像分割结 果。其余的虽最大熵小于参数手动设置所获图像分 割结果的最大熵,但基于视觉效果评价,其分割结果 与参数手动设置所获图像分割结果相近。

综上,当 V_{E} 、 α_{E} 、 β 手动设置为相同值且参数值 递增变化时,对应的最大熵递减;而3个参数设置为 Otsu 算法阈值 t 时,对应的最大熵始终处于手动设 置参数对应的较优最大熵范围内。此外,当手动设 置的参数值连续变化时,对应最大熵也连续变化,而 Otsu 算法阈值 t 始终在参数 V_{E} 、 α_{E} 、 β 手动设置较优 值的范围内。因此,该结果说明了使用 Otsu 算法对 V_{E} 、 α_{E} 、 β 值进行自适应设置的合理性。

1.2.3 最佳图像分割评价方法

在现有的关于 PCNN 模型的研究中,有效减少

迭代次数从而提高图像分割效率是关键。一般分割 后图像最大熵越大,说明分割后从原始图像中得到 的信息量越大,分割图像细节越丰富,因而图像分割 效果也越好。本文基于最大熵对改进的 PCNN 模型 进行分割效果评价,以确定迭代次数^[21-22]。

图 6 为应用改进的 PCNN 模型进行番茄植株夜 间图像迭代分割过程示例。图 6a~6e 中,从上到下 依次是图像1、2、3、4。分别选择在光照条件为2W LED 灯 CD 布局和 28 W 卤素灯 AB 布局下采集的图 像作为示例,其中阴影及曝光区域已在图 6a 中用标 注框标出。由图6可见,改进 PCNN 模型可实现阴 影及曝光区域的正确分割,同时在第2次迭代时图 像分割效果最佳。表3为图6中4幅图像分割结果 对应的最大熵。由表3可见,4幅图像均是在第2 次迭代时所得图像分割结果的最大熵。可见,改进 PCNN 模型在不同光照条件下可实现番茄植株夜间 图像的正确分割,且能够减少迭代次数,提高了算法 的实时性。

(a) 原图

(c) 第2次迭代

(e) 第4次迭代

图 6 基于改进 PCNN 模型的番茄植株夜间图像迭代分割过程

Fig. 6 Examples of iterative segmentation progress for tomato plants at night based on improved PCNN

表 3 迭代过程中的最大熵

Tab. 3 Maximum entropies in iterative progress

		最大熵				
光照条件		第1次	第2次	第3次	第4次	
		迭代	迭代	迭代	迭代	
LED(2W),对	图像1	0	0. 944 9	0.9021	0.8090	
角布局	图像2	0	0. 963 9	0.7257	0.6565	
卤素灯(28 W),	图像3	0	0. 999 9	0.9357	0.8928	
上下布局	图像4	0	0. 945 1	0.8843	0.8629	

试验结果与讨论 2

为验证改进 PCNN 模型对番茄植株夜间图像的 分割性能,应用本文算法对所采集的849幅番茄植 株夜间图像进行分割试验。

2.1 基于目视及最大熵的图像分割性能评价

由于番茄植株夜间图像背景为较单一的黑色背 景,因此,本文首先对比分析了基于固定阈值的黑色 背景分割算法与改进 PCNN 模型的分割效果,如 图7所示。结果表明,通过阈值去除黑色背景实现 番茄植株图像分割存在如下缺陷:不同光照条件下 需设置不同的阈值;阴影区域内的番茄植株茎秆被 误分割为黑色背景像素,如图7b中红色矩形框内所 示。改进 PCNN 模型则可实现阴影区域内番茄植株 茎秆的正确分割,如图7c中的红色矩形框所示。

为检验本文改进 PCNN 模型的优越性和有效 性,对不同光照条件下采集的4幅图像分别应用改 进 PCNN 模型、Otsu 算法、传统 PCNN 模型进行分割 性能对比试验,图像分割结果如图8所示。

由图 8 可知,Otsu 算法无法实现阴影区域的正 确分割:传统 PCNN 模型对阴影区域的分割性能优 于 Otsu 算法,但分割不完整;改进 PCNN 模型可实 现不同光照条件下番茄植株图像分割,且对番茄植 株茎秆的细节分割更完整,尤其是对于被阴影遮挡处 的茎秆以及番茄植株茎秆的二级和三级分枝分割较 好。

表 4 为图 8 中 4 幅图像分割结果对应的最大熵 统计表。由表4可见,Otsu 算法的图像分割效果最 差。传统 PCNN 模型的图像分割效果明显优于 Otsu 算法,但在图像分割时需多次迭代得到最佳分割结 Fig. 7

图 8 图像分割性能定性比较

表 4 基于最大熵的图像分割性能对比

fab.4	Comparison	of image	segmentation	performance	based	on	maximum	entropy
-------	------------	----------	--------------	-------------	-------	----	---------	---------

光照条件		算法	最大熵	迭代次数	时间/s
		Otsu	0.7151		0.7570
	图像1	传统 PCNN	0.8539	6	8.2305
LED(2W) 对在本目		改进 PCNN	0.9449	2	1.1260
LED(2W), Ŋ用作同		Otsu	0. 722 8		0. 470 1
	图像2	传统 PCNN	0.8482	7	8.1678
		改进 PCNN	0.9639	2	1.1520
卤素灯(28W),上下布局		Otsu	0. 791 9		0. 526 4
	图像3	传统 PCNN	0.8920	7	8.1462
		改进 PCNN	0. 999 9	2	1.1123
		Otsu	0.8288		0. 781 6
	图像4	传统 PCNN	0.8421	6	8. 253 4
		改进 PCNN	0.9451	2	1. 153 0

Fig. 8 Qualitative comparison of image segmentation performance

果,耗时较长。相对于传统 PCNN 模型,改进 PCNN 模型大大缩短运算时间。

2.2 基于分割正确率的图像分割性能定量评价

为对改进 PCNN 图像分割模型的有效性进行定 量评价,基于分割正确率、假阴率及假阳率对图像分 割结果进行评价,并与 Otsu 算法及传统 PCNN 模型 进行对比分析。对不同光照条件下采集的 849 幅番 茄植株夜间图像进行对比试验,试验结果如表5所 示。其中,假阴率为前景目标像素误分割为背景像 素的概率,假阳率为背景像素误分割为前景目标像 素的概率。由于本研究是为后续茎秆识别和定位提 供图像分割基础,为验证本文所提算法对番茄植株 茎秆图像分割的正确,表5为番茄植株图像分割结 果中茎秆的图像分割结果。

基于茎秆分割正确率的图像分割性能对比 表 5 Tab. 5 Comparison of image segmentation performance h

ased	on	segmentation	accuracy	rates	for	stems
------	----	--------------	----------	-------	-----	-------

方法	正确率/%	假阴率/%	假阳率/%	分割时间/s
Otsu 算法	70.42	29.58	23.98	0.6427
传统 PCNN 模型	88.65	11.35	30.30	10.4610
改进 PCNN 模型	90.43	9.57	32.33	0.9944

由表5可见,改进PCNN模型的正确率最高,假 阴率最低。基于 Otsu 算法的 PCNN 网络参数自适 应调整方法不仅避免了繁琐的参数手工调整过程,

且确保了图像分割的正确率。Otsu 算法分割正确 率最低是由夜间番茄植株图像对应的色差灰度图非 理想的双峰分布造成。

另外,改进 PCNN 模型的假阳率高于传统 PCNN 模型和 Otsu 算法,可能是由于改进 PCNN 模 型迭代次数减少,造成了部分像素欠分割。

为进一步分析本文算法对光照变化的适应能 力,将改进 PCNN 模型对 849 幅图像的试验结果按 光照条件进行归类,如图9所示。可见,改进 PCNN 模型对光照变化具有较好的适应能力。此外,由 图 9 可见,改进 PCNN 模型对图像采集条件为 28 W 卤素灯上下布局、图像采集距离为45 cm 时,图像分 割正确率最高,这为照明系统的设计及工作距离的 确定提供了试验依据。

2.3 图像分割实时性评价

由表4、5可知,应用改进 PCNN 模型对 849 幅 图像进行分割,均在第2次迭代时获得最佳图像分 割效果,每幅图像的平均分割时间为0.9944s。比 较而言,传统 PCNN 模型达到最佳图像分割效果的迭 代次数约为6,平均每幅图像分割时间为10.4610s。 因此,与传统 PCNN 模型相比,改进 PCNN 模型的实 时性得到了显著提升。与 Otsu 算法相比,改进 PCNN 模型的实时性稍差,主要原因是改进 PCNN 模型的运算量大于 Otsu 算法,且需进行两次

在不同光照条件下基于改进 PCNN 模型的夜间番茄植株图像分割正确率

Fig. 9 Accuracy rates of image segmentation for tomato plant images captured under various lighting conditions at night

迭代。

100

结论 3

(1)对传统 PCNN 模型的链接输入项进行加权 处理,可减小 PCNN 模型迭代的"跨度",有助于提 升 PCNN 模型的实时性。

(2) 基于 Otsu 算法的改进 PCNN 模型可实现参

数自适应设置,在避免手动设置参数的同时,确保较 高的图像分割正确率。

(3) 基于 Otsu 算法的改进 PCNN 模型可实现番 茄植株夜间图像的有效分割。图像分割正确率平均 值为 90.43%, 优于 Otsu 算法; 每幅图像平均分割时 间为 0.994 4 s, 优于传统 PCNN 模型, 略长于 Otsu 算法的分割时间。

参考文献

- [1] 宋健,张铁中,徐丽明,等. 果蔬采摘机器人研究进展与展望[J]. 农业机械学报, 2006,37(5):158-162.
 SONG Jian, ZHANG Tiezhong, XU Liming, et al. Research actuality and prospect of picking robot for fruits and vegetables[J].
 Transactions of the Chinese Society for Agricultural Machinery, 2006,37(5): 158-162. (in Chinese)
- [2] 项荣,应义斌,蒋焕煜. 田间环境下果蔬采摘快速识别与定位方法研究进展[J/OL]. 农业机械学报, 2013,44(11):208-223. XIANG Rong, YING Yibin, JIANG Huanyu. Research progress on rapid identification and location of fruit and vegetable picking in field environment [J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2013,44(11):208-223. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? file_no = 20131137&flag = 1. DOI:10.6041/j.issn.1000-1298.2013.11.037. (in Chinese)
- [3] 赵德安,沈甜,陈玉,等. 苹果采摘机器人快速跟踪识别重叠果实[J]. 农业工程学报, 2015,31(2): 22-28.
 ZHAO Dean, SHEN Tian, CHEN Yu, et al. Fast tracking and recognition of overlapping fruit for apple harvesting robot[J].
 Transactions of the CSAE, 2015, 31(2): 22-28. (in Chinese)
- [4] 熊俊涛,刘振,汤林越,等. 自然环境下绿色柑橘视觉检测技术研究[J/OL]. 农业机械学报, 2018,49(4):45-52.
 XIONG Juntao, LIU Zhen, TANG Linyue, et al. Visual detection technology of green citrus under natural environment [J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2018,49(4):45-52. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? file_no = 20180405&flag = 1. DOI:10.6041/j.issn.1000-1298.2018.04.005. (in Chinese)
- [5] 李寒,张漫,高宇,等. 温室绿熟番茄机器视觉检测方法[J]. 农业工程学报, 2017,33(增刊1): 328-334. LI Han, ZHANG Man, GAO Yu, et al. Machine vision detection method of green ripe tomato in greenhouse [J]. Transactions of the CSAE, 2017, 33(Supp.1): 328-334. (in Chinese)
- [6] 傅隆生,孙世鹏, VAZQUEZ-ARELLANO M,等. 基于果萼图像的猕猴桃果实夜间识别方法[J]. 农业工程学报, 2017, 33(2):207-212.
- FU Longsheng, SUN Shipeng, VAZQUEZ-ARELLANO M, et al. Kiwi fruit recognition method of night based on fruit calyx image [J]. Transactions of the CSAE, 2017,33(2):207-212. (in Chinese)
- [7] 项荣,段鹏飞.番茄采摘机器人夜间照明系统设计与试验[J/OL].农业机械学报,2016,47(7):8-14. XIANG Rong, DUAN Pengfei. Design and test of night lighting system of tomato picking robot[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(7):8-14. http://www.j-csam.org/jcsam/ch/reader/view_abstract. aspx? flag = 1&file_no = 20160702&journal_id = jcsam. DOI:10.6041/j.issn.1000-1298.2016.07.002. (in Chinese)
- [8] LIU X, ZHAO D, JIA W, et al. A method of segmenting apples at night based on color and position information [J]. Computers and Electronics in Agriculture, 2016, 122:118 123.
- [9] 王新忠,韩旭,毛罕平. 基于吊蔓绳的温室番茄主茎秆视觉识别[J]. 农业工程学报, 2012,28(21):135-141.
 WANG Xinzhong, HAN Xu, MAO Hanping. Visual recognition of main stem of greenhouse tomato based on tendrils[J].
 Transactions of the CSAE, 2012, 28(21):135-141. (in Chinese)
- [10] 王秀山,李智广,宫长荣. 动态图像中烟株茎秆特征的识别与应用[J]. 烟草科技, 2015,48(10):78-83.
 WANG Xiushan, LI Zhiguang, GONG Changrong. Identification and application of tobacco stalk characteristics in dynamic images [J]. Tobacco Science and Technology, 2015, 48(10):78-83. (in Chinese)
- [11] 邓翔宇,马义德. 基于 PCNN 的自动图像分割[J]. 兰州工业学院学报, 2014, 21(3): 46-51.
- [12] 刘军,李子毅. 一种复杂背景环境下的改进型 PCNN 图像分割算法[J]. 计算机与数字工程, 2018,46(2):395-406.
 LIU Jun, LI Ziyi. An improved PCNN image segmentation algorithm in complex background [J]. Computer and Digital Engineering, 2018, 46(2): 395-406. (in Chinese)
- [13] 胡蓉,夏平,雷帮军,等. 融合 Otsu 与 PCNN 的细胞显微图像分割[J]. 信息通信, 2018(11):20-24.
 HU Rong, XIA Ping, LEI Bangjun, et al. Cell microimage segmentation by fusing Otsu and PCNN[J]. Communications and Information Technology, 2018(11):20-24. (in Chinese)
- [14] 张松,汪烈军,祁彦庆. 一种基于 PCNN 和改进的 OTSU 的图像分割算法[J]. 中国科技论文, 2016,11(2):236-240.
 ZHANG Song, WANG Liejun, QI Yanqing. An image segmentation algorithm based on PCNN and improved OTSU [J].
 Chinese Science and Technology Paper, 2016, 11(2): 236-240. (in Chinese)
- [15] WEI S, HONG Q, HOU M. Automatic image segmentation based on PCNN with adaptive threshold time constant [J]. Neurocomputing, 2011, 74(9):1485-1491.
- [16] 张坤华,谭志恒,李斌.结合粒子群优化和综合评价的脉冲耦合神经网络图像自动分割[J].光学精密工程,2018, 26(4):962-970. ZUANC Verbus TAN Zhihang LL Bin Pales and a struct incompatient in a section band an active band on active band

ZHANG Kunhua, TAN Zhiheng, LI Bin. Pulse coupled neural network image automatic segmentation based on particle swarm optimization and comprehensive evaluation [J]. Optics and Precision Engineering, 2018, 26(4):962-970. (in Chinese)

- [17] MONICA S M, SAHOO S K. Pulse coupled neural networks and its applications [J]. Expert Systems with Applications, 2014, 41(8):3965-3974.
- [18] WANG B, CHEN L L, WANG M. Novel image segmentation method based on PCNN[J]. Optik, 2019,187:193-197.
- [19] YAO C, CHEN H J. Automated retinal blood vessels segmentation based on simplified PCNN and fast 2D-Otsu algorithm[J]. Journal of Central South University of Technology, 2009, 16(4):640-646.
- [20] 辛国江, 邹北骥, 李建锋, 等. 结合最大方差比准则和 PCNN 模型的图像分割 [J]. 中国图象图形学报, 2011, 16(7): 1310-1316.

XIN Guojiang, ZOU Beiji, LI Jianfeng, et al. Image segmentation based on maximum variance ratio criterion and PCNN model [J]. Journal of Image and Graphics, 2011, 16(7): 1310 - 1316. (in Chinese)

- [21] 陈恺,陈芳,戴敏,等. 基于萤火虫算法的二维熵多阈值快速图像分割[J]. 光学精密工程, 2014, 22(2):517-523. CHEN Kai, CHEN Fang, DAI Min, et al. Two-dimensional entropy multiple threshold fast image segmentation based on firefly algorithm[J]. Optics and Precision Engineering, 2014, 22(2): 517-523. (in Chinese)
- [22] LI G, ZHOU C, ZENG Y, et al. New maximum entropy-based algorithm for structural design optimization [J]. Applied Mathematical Modelling, 2019, 66(2):26-40.