doi:10.6041/j.issn.1000-1298.2013.12.029

葡萄酒香气可视化指纹图谱构建方法*

陶永胜 文 彦

(西北农林科技大学葡萄酒学院,陕西杨凌 712100)

摘要:以我国5个主要葡萄酒产区霞多丽(Chardonnay)干白葡萄酒为实验对象,研究分析了葡萄酒中的香气成分, 利用可视化方法发掘其香气指纹特征,实现对供试酒样的产区辨别。实验酒样的香气成分通过固相微萃取技术 (SPME)偶联 GC-MS 定性定量分析,计算检出成分的气味活性值(OAV),香气成分数据经标准化处理后,投影到 灰度空间,以二维灰度图直观表达香气数据的特征信息。研究结果表明,该法表达了不同产区供试酒样的香气特 征差异信息明显,尤其是 OAV 的可视化图谱可作为葡萄酒的指纹图谱,直观表达供试酒样不同产区的香气指纹特 征。

关键词:葡萄酒 霞多丽 气味活性值 可视化指纹图谱 中图分类号:TS262.6 文献标识码:A 文章编号:1000-1298(2013)12-0174-06

A Method to Build Wine Aroma Visual Fingerprints

Tao Yongsheng Wen Yan

(College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China)

Abstract: This experiment was conducted on Chardonnay dry white wines from five districts of China. In order to discriminate the different wines in terms of geographical origins, a visualization method was proposed to mining the chemical information of aromatic data. Solid-phase micro-extraction (SPME) followed by GC – MS technique was used to qualify and quantify volatile compounds in sample wines, and odor active values (OAV) of analytes were calculated and redefined. By the algorithm of gray-scale maps, the standardized data matrices were translated into visual aroma fingerprints of sample wines. The results showed that the gray-scale maps corresponding to redefined OAV were better to distinguish Chardonnay dry white wines from different regions visually and easily.

Key words: Wine Chardonnay Odor active value Visual fingerprint

引言

葡萄酒是具有地域性的农产品,其质量及风格 由原产地的气候、土壤、品种、栽培措施及酿酒工艺 等因素决定^[1]。香气可体现原产地葡萄酒的特征 和风格,是感官分析和仪器分析的重点内容。目前, 通过现代仪器分析技术,已对葡萄酒中约1000种 半挥发性和挥发性成分进行了鉴定^[2],这些成分受 到原产地域的影响,在含量上表现出差异,参与葡萄 酒复杂基质效应的形成,成为构成优质葡萄酒产区 地理标志的重要内容^[1-3]。然而,能够揭示葡萄酒 特性的重要化学信息隐藏在庞大的香气成分数据 中,为缩小分析范围,气味活性值(OAV,挥发性成 分质量浓度与嗅觉阈值的比值)被广泛用以筛选葡 萄酒典型香气成分^[4-6],并与感官分析结合,建立香 气特征与成分之间的数学联系^[7-8]。为进一步挖掘 香气分析数据中的隐藏信息,化学计量学方法被应 用于葡萄酒香气研究中,通过香气成分数据分析实 现对葡萄酒产区的辨别与质量分类^[3,9-10]。此外, 有研究通过科学计算可视化方法分析色谱数据,成 功地对中药川穹^[11]和赤霞珠葡萄酒^[12]进行了产地 区分。

收稿日期: 2012-10-26 修回日期: 2012-11-06

^{*}国家自然科学基金资助项目(31000756)和"十二五"国家科技支撑计划资助项目(2012BAD31B07)

作者简介:陶永胜,副教授,主要从事葡萄酒风味化学研究, E-mail: taoyongsheng@nwsuaf.edu.cn

本实验以我国 5 个具有代表性的优质葡萄酒产 区霞多丽干白葡萄酒为对象,运用基于灰度映像的 二维可视化技术对香气分析数据进行可视化表征, 发现并提取其香气指纹特征,整体反映各产区样品 的香气成分差异,进行不同产区霞多丽干白的直观 辨别,为我国地理标志葡萄酒产品的原产地域保护 提供技术支持。

1 材料与方法

1.1 葡萄酒样品

实验所用霞多丽(Chardonnay)单品种干白葡萄 酒(2006~2009年)采集自我国5个葡萄酒产区:昌 黎、沙城、贺兰山东麓、新疆玛纳斯和云南弥勒,分别 由中粮华夏葡萄酒有限公司(昌黎)、容晨葡萄酒有 限公司(沙城)、宁夏玉泉营葡萄酿酒有限公司(贺 兰山东麓)、新天葡萄酿酒有限公司(新疆玛纳斯) 和云南红葡萄酿酒有限公司(云南弥勒)提供。

上述 5 个酒厂均在自有葡萄园采收正常成熟霞 多丽葡萄原料(18~20°Brix),按照干白葡萄酒酿造 工艺流程进行:对葡萄原料进行除梗破碎,压榨取汁 时加入 PVPP(辅料)和膨润土澄清葡萄汁。随后加 入 SO₂(45 mg/L),在常温下于不锈钢罐中静置 24 h,在澄清葡萄汁中添加商业酿酒酵母 (*Sacharomyces cerevisia*)启动发酵,控制发酵温度在 18~20°C,根据原料含糖量,添加蔗糖,控制酒精度 为(11±1)% Vol。酒精发酵完成后转罐添加 SO₂ (质量浓度75 mg/L),在15°C条件下贮藏 3 个月,随 后进行正常的转罐、稳定,次年四月份装瓶,瓶贮3~ 6 个月。各产区每年份样品随机抽取 3 个批次,各 3 瓶,共180 瓶待测。

供试样品按照国家葡萄酒产品标准 (GB 15037—2006)检测还原糖、酒精度、挥发酸含 量、游离 SO₂和总 SO₂含量、干浸出物含量、pH 值、滴 定酸含量等理化指标,均符合标准。

1.2 仪器与试剂

实验所涉及的常规试剂购置于西安化学试剂 厂,香气成分标准样品购自 Sigma-Aldrich 公司(北 京)。将香气成分标准样品溶解于模拟酒中,模拟 酒含有质量浓度 5 g/L 酒石酸,酒精度为 12% Vol, 以 1 mol/L NaOH 溶液调整 pH 值为 3.2,置于 4℃ 避 光保存^[8]。

固相微萃取:SPME,Supelco,USA。固相萃取纤 维:PDMS (100 μm Polydimethylsiloxane),Supelco, USA。GC - MS 仪器:TRACE DSQ 型,Thermo-Finning,USA。色谱柱:DB - Wax 型毛细管柱(30 m × 0.32 mm × 0.25 μm, J&W,Folsom, USA)。

1.3 固相微萃取(SPME)条件

在15 mL顶空瓶中加入10 mL葡萄酒或模拟酒 溶液及磁力搅拌子,同时加入质量浓度2 g/L NaCl 溶液,随后将顶空瓶放入电磁搅拌器,40℃水浴中平 衡10 min,打开磁力搅拌器开关,插入 PDMS 纤维 头,在40℃下吸附30 min,立即将其取出在GC 进样 口解吸3 min,用于GC-MS分析。每个酒样的萃取 操作重复2次。

1.4 色谱(GC-MS)条件

载气:He,流速为1mL/min。程序升温:40℃保 持3min,以4℃/min的速度升温至160℃,再以 7℃/min升至230℃,保持8min。不分流进样,样品 注射体积为1µL。质谱扫描范围:33~450amu,扫 描频率1Hz/s。连接杆温度230℃,进样口温度 250℃。离子源温度230℃,电子源电离轰击,电子 源电压70eV,灯丝电流为0.20mA,检测器电压为 350 V。

1.5 定性定量方法

定性分析:采用与标准物质保留时间对比、与相 关文献中某些物质保留指数对比的方法确认^[6,13]。

定量分析:采用内标-标准曲线法定量,以3-辛 醇为内标物质,标准曲线采用五点法绘制。利用目 标化合物的特征离子峰面积插值法计算;对于没有 标准化合物的目标化合物,采用与其化学结构和分 子量相近化合物的标准曲线计算^[13]。

1.6 可视化算法

采用空间矩阵投影法转换香气成分分析数据并 设计二维灰度图。灰度映像被用于对数据矩阵进行 映射,对[0,1]之间的各数值按照从小到大的顺序 分配特定的灰度,灰度深浅代表了不同数值的大小, 实现数据空间到灰度空间的映射,完成视觉模式变 化对抽象数据变化的替代^[14~15]。本实验中采用线 性灰度图实现葡萄酒香气分析数据的可视化,直接 计算各成分数据的灰度。以 X 轴坐标代表葡萄酒 中挥发性成分的色谱保留时间,Y 轴为辅助性标量, 将一维数据向量转换为二维平面图,无具体数学意 义。在 X 轴方向上,相邻成分(保留时间)之间的区 域为后一个成分量化值的灰度。在实现可视化之前 对分析数据进行归一化和标准化处理,具体算法如 下:

(1)平移转换。标准化前数据矩阵 X 经过平移 变换为数据矩阵 Y,X 中各列向量中最小值为 X^(j)_{min}, 各列向量中数据点的平移变换为

$$Y_{ij} = X_{ij} - X_{\min}^{(j)}$$

式中 *i、j*——矩阵行、列数

(2)压缩变换。令平移后的数据矩阵 Y 中各列

数据最大值为 Y^(j),经压缩变换后的矩阵为

$$Z_{ij} = Y_{ij} / Y_{\text{max}}^{(j)}$$

经过平移变换和压缩变换,整个坐标空间被压 缩成一个[0,1]超立方体,而数据点的分布形状和 相对位置均保持不变。

香气分析数据的可视化由 VC + + 软件设计完成。

2 结果与讨论

2.1 香气成分分析

通过 SPME - GC - MS 分析, 对实验酒样中共 64 种挥发性成分进行定性、定量分析,并计算各挥 发性物质 OAV, 其中 25 种挥发性化合物的 OAV 值 大于1(表1), 被检出挥发性化合物质量浓度范围

表 1 中国 5 个产区霞多丽干白葡萄酒挥发性成分质量浓度及其 OAV

Tab.1 Contents and OAV of volatile compounds in Chardonnay dry white wines from five regions in China

	· 香气化合物	保留	阈值 ∕µg·L ⁻¹	贺兰山东麓		昌黎		云南弥勒		沙城		新疆玛纳斯	
序号		时间		质量浓度		质量浓度	OAV	质量浓度	OAV	质量浓度	0.4.17	质量浓度	OAV
		/min		/ mg · L ⁻¹		$/$ mg • L $^{-1}$		/mg·L ⁻¹		$/$ mg • L $^{-1}$	OAV	/mg·L ⁻¹	
1	乙酸乙酯	3.26	7 500	14.260	1.901	18.230	2.430	13.270	1.769	19.290	2.572	26.530	3. 538
2	乙酸异丁酯	5.60	1 600	0.060	0.038	n. d.		n. d.		n. d.		0.124	0.078
3	丁酸乙酯	6.19	20	1.198	59.900	1.427	71.350	1.936	96.800	2.043	102.200	3.165	158.300
4	1-丙醇	6.65	50 000	7.114	0.142	10.260	0.205	8.910	0.178	17.530	0.351	16.381	0.328
5	异丁醇	8.25	40 000	33.560	0.839	25.140	0.629	26.930	0.673	47.176	1.179	44.410	1.110
6	乙酸异戊酯	8.41	30	0.289	9.633	1.047	34.900	0.676	22.530	0.143	4.767	0.975	32.500
7	戊醇	9.13	45 000	n. d.		n. d.		n. d.		n. d.		0.139	0.003
8	丁醇	9.74	150 000	1.146	0.008	0.451	0.003	2.180	0.015	2.473	0.016	1.543	0.010
9	异戊醇	11.71	30 000	118	3.933	192.300	6.412	130. 500	4.350	233	7.766	248.800	8.292
10	己酸乙酯	11.99	14	0.789	56.357	0.540	38.570	1.745	124.600	2.036	145.400	1.920	137.100
11	辛酮	12.68	250	n. d.		n. d.		n. d.		0.010	0.040	0.008	0.032
12	3-甲基-3-丁烯-1-醇	12.83	n. d.	n. d.		n. d.		n. d.		n. d.		0.138	
13	戊醇	12.96	80 000	n. d.		n. d.		n. d.		0.170	0.002	0.245	0.003
14	乙酸己酯	13.31	1 500	0.033	0.022	0.028	0.019	0.182	0.121	0.019	0.013	0.057	0.038
15	2,2-苯乙基甲酸	13.85	n. d.	0.041		0.075		0.055		0.07		0.093	
16	异己醇	15.01	5 000	0.101	0.020	0.123	0.025	0.097	0.019	0.151	0.030	0.106	0.021
17	3-甲基-1-戊醇	15.41	15 000	0.198	0.013	0.422	0.028	0.229	0.015	0.323	0.022	0.302	0.020
18	乳酸乙酯	15.81	14 000	27.290	1.949	5.568	0.398	20.090	1.435	16.500	1.178	46.095	3. 293
19	己醇	16.26	8 000	5.907	0.738	6.648	0.831	8.251	1.031	14.240	1.780	15.529	1.941
20	E-3-己烯-1-醇	16.55	400	0.072	0.180	0.132	0.330	n. d.		n. d.		0.275	0.688
21	1,3-丙二醇单乙醚	16.95	100	0.033	0.330	0.0340	0.34	n. d.		n. d.		n. d.	
22	Z-3-己烯-1-醇	17.20	400	0.243	0.608	0.353	0.883	0.390	0.975	0.279	0. 698	0.462	1.155
23	2-羟基-3-甲基丁酸 乙酯	18.42	500	0. 127	0.254	0. 185	0.370	0.213	0. 426	n. d.		n. d.	
24	辛酸乙酯	18.74	5	1.028	205.600	0.809	161.800	2.005	401	2.006	401.200	2.622	524.400
25	1-庚醇	19.51	2 500	0.044	0.018	0.043	0.017	n. d.		n. d.		n. d.	
26	2-乙基己醇	20.57	5 000	0.039	0.008	0.075	0.015	0.033	0.007	0.02	0.004	0.033	0.007
27	苯甲醛	21.17	2 100	n. d.		n. d.		n. d.		n. d.		1.339	0
28	DL-3-羟基丁酸乙酯	21.34	20	n. d.		0.087	4.350	n. d.		n. d.		n. d.	
29	β-紫罗兰酮	21.39	0.09	n. d.		n. d.		n. d.		0.005	55.556	n. d.	
30	α-紫罗兰酮	21.48	0.09	n. d.		n. d.		n. d.		0.003	33. 333	n. d.	
31	壬酸乙酯	21.84	1 300	0.001	0.001	0.001	0.001	n. d.		0.001	0.001	n. d.	
32	2-羟基 4-甲基戊酸 乙酯	22. 10	200	n. d.		n. d.		0. 833	4. 165	0.370	1.850	n. d.	
33	里哪醇	22. 29	25	0.041	1.640	0.024	0.960	0.047	1.880	0.024	0.960	0.115	4.600
34	1-辛醇	22.65	900	0.073	0.081	0.045	0.050	0.051	0.057	0.040	0.044	0.059	0.066
35	乳酸异戊酯	22.88	200	0.015	0.075	0.004	0.020	0.008	0.040	0.004	0.020	0.094	0.470
36	异丁酸	23.09	8 100	0.019	0.002	0.064	0.008	0.059	0.007	n. d.		n. d.	
37	2,3-丁二醇	23.25	120 000	1.095	0.009	0.462	0.004	0. 958	0.008	0.441	0.004	3.265	0.027
38	癸酸甲酯	23.60	150	n. d.		n. d.		n. d.		n. d.		0.001	0.007

(赤主

						-7 1	•						
	- 香气化合物	保留	阈值 ∕µg·L ⁻¹	贺兰山东麓		昌黎		云南弥勒		沙城		新疆玛纳斯	
序号		时间		质量浓度	OAV	质量浓度		质量浓度	OAV	质量浓度		质量浓度	OAV
		/min		$/mg \cdot L^{-1}$		/mg·L ⁻¹	OAV	$/mg \cdot L^{-1}$		$/mg \cdot L^{-1}$	OAV	/mg · L ⁻¹	
39	松油醇	23.82	120	n. d.		n. d.		0.009	0.075	n. d.		n. d.	
40	2(3H)-二氢呋喃酮	i 24. 29	50 000	n. d.		n. d.		0.091	0.002	n. d.		n. d.	
41	癸酸乙酯	24.94	200	0.061	0.305	0.061	0.305	0.343	1.715	0.341	1.705	0.411	2.055
42	辛酸异戊酯	25.47	125	0.159	1.272	0.122	0.976	0.149	1.192	0.226	1.808	0.258	2.064
43	琥珀酸二乙酯	25.96	200 000	8.871	0.044	5.640	0.028	5.195	0.026	8.493	0.042	9.969	0.050
44	9-癸酸乙酯	26.39	100	0.011	0.110	0.017	0.170	0.018	0.180	0.002	0.020	0.015	0.150
45	癸酸异丁酯	28.21	200	n. d.		n. d.		n. d.		0.001	0.005	n. d.	
46	1-癸醇	28.52	400	0.047	0.118	0.017	0.043	0.080	0.200	0.038	0.095	0.069	0.173
47	香茅醇	28.61	40	n. d.		0.012	0.300	n. d.		n. d.		0.034	0.850
48	乙酸苯乙酯	29.70	250	0.143	0.572	0.510	2.040	0.697	2.788	0.027	0.108	0.098	0.392
49	β-大马酮	29.85	0.05	0.009	180	0.001	20	0.004	80	0.002	40	0.002	40
50	与癸酸乙酯	30.59	1 500	0.001	0.001	0.005	0.003	0.056	0.037	0.107	0.071	0.088	0.059
51	trans-香叶醇	30.75	30	n. d.		n. d.		n. d.		n. d.		0.035	1.167
52	己酸	30.83	420	1.164	2.771	2.601	6.193	6.074	14.460	0.835	1.988	1.385	3.298
53	癸酸异戊酯	31.05	300	n. d.		n. d.		n. d.		0.027	0.090	0.031	0.103
54	苯乙酸乙酯	31.46	650	0.122	0.188	n. d.		n. d.		n. d.		n. d.	
55	苯乙醇	32.14	14 000	17.140	1.224	14.210	1.015	14.530	1.038	10.490	0.749	13.280	0.948
56	月桂醇	33.44	10 000	0.011	0.001	0.009	0.001	0.041	0.004	0.009	0.001	0.019	0.002
57	trans-橙花叔醇	34.75	700	0.028	0.040	0.008	0.011	0.074	0.106	0.056	0.080	0.014	0.020
58	肉豆蔻酸乙酯	34.90	2 000	n. d.		0.001	0.001	0.001	0.001	0.006	0.003	0.002	0.001
59	辛酸	35.16	500	6.650	13.300	7.564	15.130	19.220	38.440	5.234	10.470	9.003	18.010
60	棕榈酸乙酯	38.14	1 500	n. d.		0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
61	癸酸	38.61	1 000	0.304	0.304	0.182	0.182	4.501	4.501	0.491	0.491	1.279	1.279
62	2,4-二季丁基苯酚	38.92	200	0.073	0.365	0.086	0.430	0.227	1.135	0.051	0.255	0.067	0.335
63	9-癸烯酸	39.50	n. d.	n. d.		n. d.		0.107		n. d.		n. d.	
64	月桂酸	41.44	1 500	n. d.		n. d.		0.073	0.049	n. d.		n. d.	

注:n.d. 表示该物质未检测出。

在1μg/L~249 mg/L,主要检出成分是高级醇、脂肪酸和化学酯,其质量浓度在1mg/L及以上,同时也检出微量萜烯类化合物和去甲类异戊二烯化合物, 其质量浓度在μg/L水平或更低,与其他文献报道 一致^[1,16]。但香气成分的含量与其对葡萄酒整体香 气质量的贡献并没有直接的联系,而其 OAV 值却在 一定程度上反映其香气质量贡献。

虽然 OAV 忽略了香气成分之间的相互叠加和 抑制作用,但却是目前被普遍认可的估计葡萄酒中 单个挥发性成分实际香气贡献的客观方法^[4-5],并 有大量文献报道微量或痕量化合物对葡萄酒香气的 重要影响。萜烯类化合物使得葡萄酒富有花香,特 别是玫瑰香气^[17];一些去甲类异戊二烯化合物导致 陈年雷司令葡萄酒具有煤油等矿物风味,而某些氨 基苯丙酮类物质使康可(*Vitis labruscana*)单品种葡 萄酒具有"狐臭"味^[18];雪莉酒的独特风味来自一些 内酯物质^[19];而甲氧基吡嗪类物质是赤霞珠葡萄酒 典型青椒风味的来源^[20]。但也有文献指出,这些具 有典型香气特征的化合物或者化合物族不是某类葡 萄酒的特有成分,在其他葡萄酒中也有检出,仅仅在 含量或者组合上有差异^[21]。

2.2 葡萄酒色谱分析数据的可视化结果

受到葡萄生长地的气候、土壤、酿造控制等因素 的影响,葡萄酒有非常复杂的基质效应,但同时也赋 予不同产区葡萄酒特定的风格,这为建立葡萄酒地 理标志提供了理论依据。基于此,研究者们从葡萄 酒中含有的化学物质出发寻找化学标记,构建指纹 图谱,辨别和区分不同产区、不同品种具有典型风格 的优质葡萄酒,保护优质产区,促使葡萄酒产业的良 性发展。除分析葡萄酒中含有的微量元素[22~23]、多 酚类物质^[24]以及同位素分析^[2, 25],挥发性成分也被 认为具有产区及品种特异性,被用于葡萄酒产区及 品种的保护和鉴定^[3,10,26]。这些香气成分虽然在葡 萄酒中普遍存在,却因为受产地及品种的影响,在含 量上表现出特异性^[2,27]。乙酸己酯、苯甲醇、苯乙醇 和苯甲醛曾被用于葡萄品种的鉴定^[28],而葡萄酒中 的酚类物质和挥发性成分也被证实可用以区分不同 酿造工艺^[29]。本实验首先对葡萄酒香气的色谱分 析原始数据进行可视化表征,其结果如图1所示。 相对于中药产地鉴别研究中提出的在 X 轴方向上

采用双向插值法完成相邻坐标间区域填充^[11],本文 提出的可视化方法直接计算各成分数据的灰度, X 轴上相邻成分之间的区域即为后一成分量化值的 灰度,所得的二维灰度图连续性和可比性均更好,更 直观地实现产区辨别。陶永胜等^[12]按照该法构建 的可视化图谱,可以实现中国不同产区年轻赤霞珠 干红葡萄酒的可视化分析。

分析图 1 可知,不同产区霞多丽酒样之间的差 异并不明显,仅有些灰度条带有细微的深浅差别,反 映了条带所对应挥发性物质在含量上的不同,说明 各产区并没有特有的挥发性成分存在,因此该法直 接利用色谱原始数据进行可视化表征无法将不同产 区霞多丽葡萄酒产品从视觉角度区分开来。

2.3 葡萄酒香气成分 OAV 值的可视化表征

目前有不少研究讨论影响单品种葡萄酒典型香 气的的关键气味物质,由于这些化学物质对葡萄酒 香气的贡献决定于其实际浓度是否超过其阈值浓 度,在忽略基质效应单纯考虑单个化合物香气贡献 的情况下,一些具有高 OAV 值的挥发性成分被认为 是影响葡萄酒香气风格的重要物质,包括丁酸乙酯、 异戊酸乙酯、2-甲基丁酸乙酯等短链酯类物质,一些 挥发性酚类物质、萜烯醇、内酯和去甲类异戊二 烯^[30-32]。结合化学计量学方法,研究者根据葡萄酒 中 OAV 值较高的挥发性化合物成功地对产品进行 了产区鉴定和分类^[33]。

由于图1中利用原始色谱数据构建的可视化图

谱不能直观反映不同产区葡萄酒的香气差异,因此 本实验计算检出成分的 OAV 值(表1),根据气味物 质饱和度,将活性化合物(OAV 不小于1)的 OAV 定义为1(目的为简化二维灰度图,增强对比度),然 后将转换后的 OAV 进行二维灰度图的可视化表征, 结果如图2 所示。

(a) 贺兰山东麓(b) 昌黎(c) 云南弥勒(d) 沙城(e) 新疆玛纳斯

由图 2 可见,检出的挥发性物质对应的灰度条 带按照保留时间顺序地排列在 X 轴方向上。5 个产 区对应的二维灰度图中颜色最深的条带代表各酒样 中的气味活性物质(OAV 不小于 1),多为酯类物 质、萜烯类和去甲异戊二烯类物质,这些特征条带的 分布具有明显差异,通过对比其分布即可明显地区 分并鉴别各产区供试酒样,而灰度图的复杂度也在 一定程度上反映了葡萄酒的香气质量。因此,本研 究提出的方法可有效提取不同产地实验酒样原始香 气成分数据隐含的化学信息,构建香气指纹图谱,实 现对不同产区霞多丽干白葡萄酒的视觉辨识。

3 结论

(1)采集我国 5 个典型葡萄酒产区的霞多丽干 白葡萄酒产品,通过 SPME - GC - MS 技术进行挥发 性物质的定性、定量分析,共鉴定出 64 种香气成分, 其中 25 种化合物 OAV 值大于 1,具有气味活性,对 整体香气有重要贡献。

(2) 对原始色谱分析数据进行可视化表征,得

到的二维灰度图在条带颜色上有一些细微差别,但 不明显,无法通过观察直观区分来自不同产区的实 验酒样。 视觉可辨别的二维灰度图整体反映不同产区供试酒 样的香气成分活性度,可以实现葡萄酒的产区鉴别, 为葡萄酒地理标志的建立提供技术支持。

(3) 对检出成分的 OAV 进行可视化表征,利用

参考文献

- 1 Ebeler S E, Thorngate J H. Wine chemistry and flavor: looking into the crystal glass [J]. Journal of Agricultural and Food Chemistry, 2009, 57(18): 8 098 ~ 8 108.
- 2 Saurina J. Characterization of wines using compositional profiles and chemometrics [J]. TrAC Trends in Analytical Chemistry, 2010, 29(3): 234 ~ 245.
- 3 Marengo E, Aceto M, Maurino V. Classification of Nebbiolo-based wines from Piedmont (Italy) by means of solid-phase microextraction-gas chromatography-mass spectrometry of volatile compounds [J]. Journal of Chromatography A, 2002, 943(1): 123~137.
- 4 Guth H. Quantitation and sensory studies of character impact odorants of different white wine varieties [J]. Journal of Agricultural and Food Chemistry, 1997, 45(8): 3 027 ~ 3 032.
- 5 Ferreira V, Ortín N, Escudero A, et al. Chemical characterization of the aroma of Grenache rosé wines: aroma extract dilution analysis, quantitative determination, and sensory reconstitution studies [J]. Journal of Agricultural and Food Chemistry, 2002, 50(14): 4 048 ~ 4 054.
- 6 Li H, Tao Y S, Wang H, et al. Impact odorants of Chardonnay dry white wine from Changli county (China) [J]. European Food Research and Technology, 2008, 227(1): 287 ~ 292.
- 7 Tao Yongsheng, Zhang Li. Intensity prediction of typical aroma characters of Cabernet Sauvignon wine in Changli county (China)
 [J]. LWT Food Science and Technology, 2010, 43(10): 1550 ~ 1556.
- 8 陶永胜,彭传涛.中国霞多丽干白葡萄酒香气特征与成分关联分析 [J].农业机械学报,2012,43(3):130~139. Tao Yongsheng, Peng Chuantao. Correlation analysis of aroma characters and volatiles in Chardonnay dry white wines from five districts in China [J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(3):130~139. (in Chinese)
- 9 Kallithraka S, Arvanitoyannis I, Kefalas P, et al. Instrumental and sensory analysis of Greek wines: implementation of principal component analysis (PCA) for classification according to geographical origin [J]. Food Chemistry, 2001, 73(4): 501 ~ 514.
- 10 Giraudel J L, Setkova L, Pawliszyn J, et al. Rapid headspace solid-phase microextraction-gas chromatographic-time-of-flight mass spectrometric method for qualitative profiling of ice wine volatile fraction Ⅲ. Relative characterization of Canadian and Czech ice wines using self-organizing maps [J]. Journal of Chromatography A, 2007, 1147(2): 241 ~ 253.
- 11 程翼宇,余杰,吴永江. 色谱数据可视化及天然植物药指纹特征发现方法 [J]. 化学学报,2002,60(2):328~333. Cheng Yiyu, Yu Jie, Wu Yongjiang. A visualization method of chromatographic data for discovering fingerprint features of natural herbal medicines [J]. Acta Chimica Sinica, 2002, 60(2):328~333. (in Chinese)
- 12 陶永胜,李华,王华. 中国不同产区赤霞珠干红葡萄酒香气成分数据的可视化分析 [J]. 分析化学,2008,36(5):653~657. Tao Yongsheng, Li Hua, Wang Hua. Data visualization of wine aroma compounds of Cabernet Sauvignon dry red wines from different origins in China[J]. Chinese Journal of Analytical Chemistry, 2008,36(5):653~657. (in Chinese)
- 13 Perestrelo R, Fernandes A, Albuquerque F, et al. Analytical characterization of the aroma of Tinta Negra Mole red wine: identification of the main odorants compounds [J]. Analytica Chimica Acta, 2006,563(1~2): 154~164.
- 14 李月景.图像识别技术及其应用[M].北京:机械工业出版社,1985:14~20.
- 15 梁逸曾. 白灰黑复杂多组分分析体系及其化学计量学算法 [M]. 长沙: 湖南科学技术出版社, 1996.
- 16 Tao Y S, Li H, Wang H, et al. Volatile compounds of young Cabernet Sauvignon red wine from Changli county (China) [J]. Journal of Food Composition and Analysis, 2008, 21(8): 689 ~ 694.
- 17 Câmara J, Herbert P, Marques J, et al. Varietal flavour compounds of four grape varieties producing Madeira wines [J]. Analytica Chimica Acta, 2004, 513(1): 203 ~ 207.
- 18 Acree T E, Lavin E H. O-amino acetophenone, the "foxy" smelling component of labruscana grapes [M] // Bessi R E, Thomas A F. Flavor science and technology, New York: Wiley, 1990: 49 ~ 52.
- 19 Martin B, Etievant P X, Le Quere J L, et al. More clues about sensory impact of sotolon in some flor sherry wines [J]. Journal of Agricultural and Food Chemistry, 1992, 40(3): 475 ~ 478.
- 20 Allen M S, Lacey M J, Harris R L N, et al. Contribution of methoxypyrazines to Sauvignon Blanc wine aroma [J]. American Journal of Enology and Viticulture, 1991, 42(2): 109 ~112.
- 21 Ferreira V, López R, Escudero A, et al. The aroma of Grenache red wine: hierarchy and nature of its main odorants [J]. Journal of the Science of Food and Agriculture, 1998, 77(2): 259 ~ 267.
- 22 Galgano F, Favati F, Caruso M, et al. Analysis of trace elements in southern Italian wines and their classification according to provenance [J]. LWT-Food Science and Technology, 2008, 41(10): 1808 ~ 1815.

climate[J]. Global Environmental Change Part A, 2005,15(4): 394~404.

- 9 Evans J P, Geerken R. Discrimination between climate and human-induced dryland degradation [J]. Journal of Arid, 2004, 57(4): 535 ~ 554.
- 10 宋怡,马明国. 基于 SPOT VEGETATION 数据的中国西北植被覆盖变化分析[J]. 中国沙漠, 2007,27(1): 89~93. Song Yi,Ma Mingguo. Study on vegetation cover change in Northwest China based on SPOT VEGETATION data[J]. Journal of Desert Research, 2007,27(1): 89~93. (in Chinese)
- 11 韩秀珍,李三妹,罗敬宁,等.近20年中国植被时空变化研究[J].干旱区研究,2008,25(6):753~759.
 Han Xiuzhen, Li Sanmei, Luo Jingning, et al. Study on spatiotemporal change of vegetation in China since 20 years [J]. ARD Zone Research, 2008, 25(6):753~759. (in Chinese)
- 12 邱海军,曹明明.基于 SPOT VEGETATION 数据的中国植被覆盖时空变化分析[J].资源科学,2011,33(2):335~340. Qiu Haijun, Cao Mingming. Spatial and temporal variations in vegetation cover in China based on SPOT VEGETATION data [J]. Resources Science, 2011, 33(2):335~340. (in Chinese)
- 13 陈燕丽,龙步菊,潘学标,等. MODIS NDVI 和 AVHRR NDVI 对草原植被变化监测差异[J]. 遥感学报,2011,15(4):831~845. Chen Yanli, Long Buju, Pan Xuebiao, et al. Differences between MODIS NDVI and AVHRR NDVI in monitoring grasslands change[J]. Journal of Remote Sensing,2011,15(4):831~845. (in Chinese)
- 14 贺振,贺俊平. 基于 SPOT-VGT 的黄河流域植被覆盖时空演变[J]. 生态环境学报,2012,21(10):1655~1659.
 He Zhen, He Junping. Spatio-temporal variation of vegetation cover based on SPOT-VGT in Yellow River Basin [J]. Ecology and Environmental Sciences, 2012, 21(10): 1655~1659. (in Chinese)
- 15 李双双,延军平,万佳. 近10年陕甘宁黄土高原区植被覆盖时空变化特征[J]. 地理学报,2012,67(7):960~970. Li Shuangshuang, Yan Junping, Wan Jia. The spatial-temporal changes of vegetation restoration on Loess Plateau in Shaanxi-Gansu-Ningxia region[J]. Acta Geographica Sinica,2012,67(7):960~970. (in Chinese)
- 16 孙晓鹏,王天明,葛剑平. 基于 MODIS 的北京绿化隔离地区植被格局与趋势分析[J]. 地理与地理信息科学,2012,28(6): 20~23.

Sun Xiaopeng, Wang Tianming, Ge Jianping. Pattern and trend analysis of the isolated afforestation regions in Beijing using MODIS [J]. Geography and Oeo-Information Science, 2012,28(6):20 ~23. (in Chinese)

- 17 Burnet M F. A modification of Jerne's theory of antibody production using the concept of clonal selection [J]. Austrian Journal of Science, 1957, 20(1):67 ~ 76.
- 18 de Castro L N, von Zuben F J. Artifical immune systems: part I—basic theory and applications [R]. RT- DCA, 1999.
- 19 de Castro L N, von Zuben F J. Learning and optimization using the clonal selection principle [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(3):239 ~ 251.
- 20 Davies D I, Bouldin D W. A cluster separation measure [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1979, 1(2): 224 ~ 227.

(上接第179页)

- 23 Gonzálvez A, Llorens A, Cervera M L, et al. Elemental fingerprint of wines from the protected designation of origin Valencia [J]. Food Chemistry, 2009, 112(1): 26 ~ 34.
- 24 Makris D P, Kallithraka S, Mamalos A. Differentiation of young red wines based on cultivar and geographical origin with application of chemometrics of principal polyphenolic constituents [J]. Talanta, 2006, 70(5): 1143 ~1152.
- 25 Almeida C M, Vasconcelos M T S D. ICP-MS determination of strontium isotope ratio in wine in order to be used as a fingerprint of its regional origin [J]. Journal of Analytical Atomic Spectrometry, 2001, 16(6): 607 ~ 611.
- 26 Ferreira V, Fernández P, Cacho J F. A study of factors affecting wine volatile composition and its application in discriminant analysis [J]. LWT-Food Science and Technology, 1996, 29(3): 251 ~ 259.
- 27 López R, Ferreira V, Hernández P, et al. Identification of impact odorants of young red wines made with Merlot, Cabernet Sauvignon and Grenache grape varieties: a comparative study [J]. Journal of the Science of Food and Agriculture, 1999, 79(11): 1 461 ~ 1 467.
- 28 Rosillo L, Salinas M R, Garijo J, et al. Study of volatiles in grapes by dynamic headspace analysis: application to the differentiation of some Vitis Vinifera varieties [J]. Journal of Chromatography A, 1999, 847(1): 155 ~159.
- 29 Isabel Spranger M, Cristina Clímaco M, Sun B, et al. Differentiation of red winemaking technologies by phenolic and volatile composition [J]. Analytica Chimica Acta, 2004, 513(1): 151 ~ 161.
- 30 Aznar M, López R, Cacho J F, et al. Identification and quantification of impact odorants of aged red wines from Rioja. GC Olfactometry, quantitative GC-MS, and odor evaluation of HPLC fractions [J]. Journal of Agricultural and Food Chemistry, 2001, 49(6): 2 924 ~ 2 929.
- 31 Culleré L, Cacho J, Ferreira V. Analysis for wine C₅-C₈ aldehydes through the determination of their O-(2, 3, 4, 5, 6-pentafluorobenzyl) oximes formed directly in the solid phase extraction cartridge [J]. Analytica Chimica Acta, 2004, 524(1 ~ 2); 201 ~ 206.
- 32 Nasi A, Ferranti P, Amato S, et al. Identification of free and bound volatile compounds as typicalness and authenticity markers of nonaromatic grapes and wines through a combined use of mass spectrometric techniques [J]. Food Chemistry, 2008, 110(3): 762 ~ 768.
- 33 Lee S J, Noble A C. Characterization of odor-active compounds in Californian Chardonnay wines using GC Olfactometry and GC MS spectrometry [J]. Journal of Agricultural and Food Chemistry, 2003, 51(27): 8 036 ~ 8 044.