DOI:10.3969/j.issn.1000-1298.2010.11.005

汽油机油膜模型参数辨识*

洪木南 李建秋 欧阳明高 (清华大学汽车工程系,北京100084)

【摘要】 为了提高汽油机瞬态空燃比的控制精度,油膜模型被广泛使用。回顾了油膜模型参数的传统辨识方法,提出了可加快辨识过程的解耦辨识法,实现了模型参数的解耦自动辨识。通过仿真试验,证明了该解耦辨识法的有效性。最后提出了较为理想的双方程辨识方法,可定量计算得到油膜参数的值。

关键词:汽油机 油膜模型 参数辨识

中图分类号: TK417 文献标识码: A 文章编号: 1000-1298(2010)11-0026-05

Parameters Identification of the Fuel Film Model for Spark Ignition Engines

Hong Munan Li Jianqiu Ouyang Minggao

(Department of Automobile Engineering, Tsinghua University, Beijing 100084, China)

Abstract

With the aim to improve the accuracy in transient A/F control for spark ignition engines, fuel film model was widely used. The traditional identification methods of the fuel film model were reviewed. To faster parameters identification process, a decoupling auto-identification method was presented. The result of simulation showed that the proposed method was valid. Finally, a theoretic two-equation algorithm, which could calculate the fuel film model parameters directly, was introduced.

Key words SI engine, Fuel film model, Parameters identification

引言

发动机稳态工况下,基于氧传感器的空燃比反 馈闭环控制已经可以满足三元催化剂的要求^[1];而 瞬态工况下,需要基于动态模型对空燃比进行前馈 预测控制^[2],其关键是准确得到进入气缸的气量和 油量。其中,油膜模型因能有效补偿进气道喷射发 动机的油膜"壁湿"效应得到了广泛应用。油膜参 数辨识是油膜模型得以应用的基本前提,已有不少 文献对其展开了研究。

早期的汽油机油膜模型参数辨识方法,辨识过 程较为盲目,耗费时间长,经过发展后,虽可定性对 参数的调整方向作出指导,但仍然没有实现油膜模 型参数的完全解耦,且是人工调整,辨识过程仍然较 为繁琐,不利于实现自动辨识。本文对油膜模型的 参数辨识方法作一些改进,以期实现模型参数的解 耦自动辨识,缩短标定周期。

1 油膜模型和理想补偿器

1.1 油膜模型

油膜模型的主要作用是研究进气道喷射发动机 从喷射点到进气门燃油的流动情况。在点燃式发动 机中,影响供油系统动态的主要因素是油膜在进气 管中的传输和在进气歧管中的蒸发过程。燃油进入 气缸有两个途径,一个途径是喷出的燃油直接以燃 油蒸汽的形式,和空气一起进入;另一条途径是喷出 的燃油先在进气管壁上形成油膜,通过二次蒸发再 和空气一起进入气缸,其蒸发时间常数为 τ_f 。如果 假设喷射到进气歧管中成为油膜的燃油占总喷射燃 油量的比率为 X,则燃油蒸汽所占比例为 1 – X。油 膜状态方程为^[3]

* 国家"973"重点基础研究发展计划资助项目(2007CB210003)

收稿日期:2009-12-01 修回日期:2009-12-18

作者简介:洪木南,博士生,主要从事发动机及混合动力系统建模与控制研究, E-mail: hmn@ mails. tsinghua. edu. cn

$$\begin{cases} \dot{m}_{ff} = -\frac{1}{\tau_f} m_{ff} + X \dot{m}_{fi} \\ \dot{m}_{fv} = (1 - X) \dot{m}_{fi} \\ \dot{m}_f = \dot{m}_{fv} + \frac{1}{\tau_f} m_{ff} \end{cases}$$
(1)

式中 前,----燃油喷射流量

m_{fr}——燃油蒸汽流量 *m_{ff}*——油膜质量
 m_f——实际进入气缸的燃油蒸汽流量
 油膜模型如图 1 所示。

从油膜模型可看出,由于存在"壁湿"效应,瞬 态情况下喷射燃油流量和进缸燃油流量并不相等。 当空气流量增加,相应要求进缸燃油流量增加时,若 喷油器的喷油按计算得到的进缸燃油流量进行,则 会偏稀;反之亦然。根据油膜模型可以设计理想补 偿器,对燃油喷射进行"壁湿"效应补偿,从而改善 瞬态过程空燃比的控制效果。

1.2 理想补偿器

文献[4] 附录中详细解释了理想补偿器的原理,推导理想补偿器的示意图如图2所示。

Fig. 2 Sketch for deriving ideal compensation

图中 \dot{m}_{fu} 为目标进缸燃油流量; \hat{y} 为估计进缸燃油流量。

假设上述油膜模型是准确的,即 $\dot{m}_{f} = \hat{y}$,需确定 \dot{m}_{fi} ,使 \hat{y} 和目标进缸燃油流量相等,即 $\hat{y} = \dot{m}_{fu}$ 。

根据油膜模型, ŷ 满足

$$\begin{cases} \dot{m}_{ff} = -\frac{1}{\tau_f} m_{ff} + X \dot{m}_{fi} \\ \hat{y} = (1 - X) \dot{m}_{fi} + \frac{1}{\tau_f} m_{ff} \end{cases}$$
(2)

根据图2,可以得到

$$\dot{m}_{fi} = K(\dot{m}_{fu} - \hat{y}) = K\left(\dot{m}_{fu} - (1 - X)\dot{m}_{fi} - \frac{1}{\tau_f}m_{ff}\right)$$
(3)

$$\dot{m}_{fu} - \hat{y} = \dot{m}_{fu} - (1 - X)\dot{m}_{fi} - \frac{1}{\tau_f}m_{ff} = \frac{\dot{m}_{fi}}{K} \quad (4)$$

如果 K 趋于无穷,则有 $\hat{y} = \hat{m}_{tu}$,即

$$\dot{m}_{fu} - (1 - X)\dot{m}_{fi} - \frac{1}{\tau_f}m_{ff} = 0$$
 (5)

由此得到

$$\dot{n}_{fi} = \frac{1}{1 - X} \left(\dot{m}_{fu} - \frac{m_{ff}}{\tau_f} \right) \tag{6}$$

其中

式(6)和式(7)即构成理想补偿器。通过理想 补偿器实时对喷油量进行补偿,可以消除油膜效应 带来的影响。而理想补偿器需要应用油膜模型的两 个关键参数 *X* 和 *τ_f*,它们通常随发动机工况的不同 而不同,需要进行辨识。

 $\dot{m}_{ff} = -\frac{1}{\tau_f} m_{ff} + X \, \dot{m}_{fi}$

2 油膜参数传统辨识方法

目前广泛使用文献[4]介绍的油膜参数辨识方法。如图3所示,在目标燃油量和实际喷油器喷油 量之间加入一个非线性补偿器,用于补偿油膜壁湿 效应的影响;在发动机排气管安装氧传感器,用于测 量空燃比。

Fig. 3 Fuel film model parameters identification

在某一稳定工况下,保持节气门开度、负载和燃 油流量不变,确保过量空气系数 λ 始终等于1。令 目标燃油流量 \dot{m}_{fu} 发生一个小方波干扰,偏移量不应 超过10%,从而确保发动机状态不发生改变,X和 τ_f 在该过程为一常数。此时由于油膜参数为常数, 非线性补偿器就变成简单的线性补偿器,但此刻并 不知道油膜参数真值,补偿时只能按照估计的 X_{τ_f} 进行补偿。如果估计值和真值正好相等,发动机得 到理想补偿,实际进缸燃油流量 \dot{m}_f 和目标进缸燃油 流量 \dot{m}_h 相等,从氧传感器上测得的过量空气系数 λ 的方波相位和目标进缸燃油流量 \dot{m}_h 正好相反(此 时发动机仍然稳定工作在该工况下,因此可以认为

(7)

进气流量始终保持不变)。否则,若估计的油膜参数值和真值仍有偏差,过量空气系数将不会出现和目标进缸燃油流量相反的方波。不断调整补偿器中 *X*、*τ_f*的估计值,直到过量空气系数波形呈现方波,此时估计值和真值相等。

在不同的充气温度和进气压力下,分别进行稳态的油膜参数辨识,可得到以充气温度和进气压力 为自变量坐标的油膜参数 MAP 图。

上述传统的油膜参数辨识过程中,如果估计的 X_{τ_f} 和真实值有差别,将不能根据得到的空燃比波 形,有针对性的修改某个油膜参数,使其逼近真实 值;只能试探性的增加或减少X或 τ_f ,进行新估计值 的补偿,然后再观察空燃比的波形。辨识过程的盲目 性将增加参数的调整次数,耗费大量的试验时间。而 且X和 τ_f 耦合在一起调整,实现起来也较为困难。

文献[5]和文献[6]对文献[4]的方法作了进一步改进,如图4所示,可根据得到的空燃比波形,定 性判断 $X 和 \tau_f$ 的估计值大于真实值或是小于真实 值,从而能有效地将估计值调整收敛到真实值。

Fig. 4 Waveforms of air fuel ratio when the estimated parameters differ from real values

3 解耦辨识法

上述改进的辨识方法已能根据得到的空燃比波 形,有针对性地调整油膜参数,使其更快接近或达到 真值,但仍然没有实现 X 和 τ_f 的解耦,不利于实现 自动辨识。下面将介绍解耦辨识算法的基本原理。

对式(6)和式(7)分别进行拉普拉斯变换,并消 去 m_g,可以得到传递函数

$$\frac{M_{fi}(s)}{\dot{M}_{fu}(s)} = \frac{1 + s\tau_f}{1 + (1 - X)s\tau_f}$$
(8)

假定目标燃油流量 \dot{m}_{fu} 为单位阶跃,则 $\dot{M}_{fu}(s) = \frac{1}{s}$,代入式(8),并进行拉普拉斯反变换,得到

$$\dot{m}_{fi}(t) = 1 + \frac{X}{1 - X} e^{-\frac{t}{(1 - X)\tau_f}}$$
 (9)

考虑到 \dot{m}_{fu} 并不是单位阶跃,令其阶跃幅度为 $\Delta \dot{m}_{fu}$,初值为 \dot{m}_{fu0} ,则有

$$\dot{m}_{fi}(t) = \dot{m}_{fu0} + \Delta \dot{m}_{fu} \left(1 + \frac{X}{1 - X} e^{-\frac{t}{(1 - X)\tau_f}} \right) \quad (10)$$

式(10)即为目标燃油流量 *'n_{fu}产*生一微小阶跃 扰动时,为了保证进缸燃油流量和目标燃油流量一 致,经过理想补偿后喷油器所应喷射的燃油流量。 此时的过量空气系数应为

$$\lambda(t) = \frac{\dot{m}_{ap}(t)}{\dot{m}_{fu}(t)L_{th}}$$
(11)

式中 *m*_{ap}(t)——该稳态工况点的进气质量流量 *L*_{th}——理论空燃比

油膜参数辨识过程中,上述补偿算法采用估计的 X_{Λ_f} ,将其分别表示为 \hat{X}_{Λ_f} 。从而辨识过程中经过补偿后的喷油量为

$$\hat{m}_{fi}(t) = \dot{m}_{fi0} + \Delta \dot{m}_{fu} \left(1 + \frac{\hat{X}}{1 - \hat{X}} e^{-\frac{t}{(1 - \hat{X})\hat{\tau}_f}} \right)$$
(12)

在 *t* = 0 时刻,根据式(10),为了对油膜效应进行补偿,所应喷射的燃油流量为

$$\dot{m}_{fi}(t) = \dot{m}_{fu0} + \frac{1}{1 - X} \Delta \dot{m}_{fu}$$
(13)

而根据估计值进行补偿后实际喷射流量为

$$\hat{\vec{m}}_{fi}(t) = \dot{m}_{fu0} + \frac{1}{1 - \hat{X}} \Delta \dot{m}_{fu}$$
(14)

由式(13)和式(14)可见,初始时刻的燃油补偿

量只和 X 有关, 而和 τ_f 无关。若 $\hat{X} > X$, 则有 $\hat{m}_{f} > \hat{m}_{f}$, 即初始时刻燃油补偿过量, 相应空燃比偏小; 同 理当 $\hat{X} < X$ 时, 初始时刻空燃比偏大; 当 $\hat{X} = X$ 时, 初 始时刻空燃比等于理想补偿后初始时刻的空燃比。 从物理意义上分析, 当 X 估计值偏大时, 过大估计 了油膜形成比例, 补偿过程多喷了燃油, 导致空燃比 偏小; 其他情况也可作类似解释。

t > 0时,燃油补偿和 X, τ_f 均有关,假设 $\hat{X} = X$, 此时若 $\hat{\tau}_f > \tau_f$,则根据式(10)和式(12)有 $\hat{m}_{f_f} > \hat{m}_{f_f}$, 空燃比偏小;同理当 $\hat{\tau}_f < \tau_f$ 时,空燃比偏大;当 $\hat{\tau}_f =$ τ_f 时,空燃比等于理想补偿后的空燃比。从物理意 义上分析,当 τ_f 估计值偏大时,即过大估计了油膜 蒸发时间常数,补偿过程多喷了燃油,导致空燃比偏 小;其他情况也可作类似解释。当目标油量为下阶 跃时,可作类似分析,结果如表1所示。

为了对上述辨识方法进行验证,在 Matlab/ Simulink 中进行仿真。仿真过程中,模型参数的真 值设置为 X = 0.45, $\tau_f = 1.0$,燃油补偿时采用的模 型参数初始值为 $\hat{X} = 0.51$, $\hat{\tau}_f = 1.7$ 。按上述解耦辨 识方法对所给参数进行调整,得到结果如图 5 所示。 由图可见, \hat{X} 给定初值后经过 4 次调整即得到真值; 从 100 s 起开始,给定 $\hat{\tau}_f$ 初值后开始对其进行调整, 再经过8次调整即可得到真值。

		表1	解耦辨	识法		
Tab. 1 Decouple identification method						
		$\hat{ au}_f$	目标进缸		目标进缸	
序 号	Â		油量突增		油量突减	
			(空燃比突减)		(空燃比突增)	
			初始λ	过渡λ	初始λ	过渡λ
1	$\hat{X} < X$	$\hat{\tau}_f > \tau_f$	偏大		偏小	
2	$\hat{X} = X$	$\hat{\tau}_f > \tau_f$	无偏差	偏小	无偏差	偏大
3	$\hat{X} > X$	$\hat{\tau}_f > \tau_f$	偏小		偏大	
4	$\hat{X} < X$	$\hat{\tau}_f = \tau_f$	偏大		偏小	
5	$\hat{X} = X$	$\hat{\tau}_f = \tau_f$	无偏差	无偏差	无偏差	无偏差
6	$\hat{X} > X$	$\hat{\tau}_f = \tau_f$	偏小		偏大	
7	$\hat{X} < X$	$\hat{\tau}_f < \tau_f$	偏大		偏小	
8	$\hat{X} = X$	$\hat{\tau}_f < \tau_f$	无偏差	偏大	无偏差	偏小
9	$\hat{X} > X$	$\hat{\tau}_f < \tau_f$	偏小		偏大	

4 双方程法

上述方法均需要进行迭代,双方程辨识则能定 量得到油膜参数。

对原油膜模型式(1)作拉普拉斯变换,得到

$$\dot{M}_{f}(s) = \dot{M}_{fi}(s) \frac{1 + (1 - X)s\tau_{f}}{1 + s\tau_{f}}$$
(15)

当喷射燃油流量 \dot{m}_{fi} 为单位阶跃时,则 $\dot{M}_{fi}(s) = \frac{1}{s}$,代入式(15),并进行拉普拉斯反变换,得到

$$\dot{m}_f(t) = 1 - X e^{-\frac{t}{\tau_f}}$$
 (16)

考虑到 *m_{fi}*并不是单位阶跃,令其阶跃量为 Δ*m_{fi}*,初值为 *m_{fi0}*,则实际进缸燃油流量为

$$\dot{m}_{f}(t) = \dot{m}_{fi0} + \Delta \dot{m}_{fi} \left(1 - X e^{-\frac{t}{\tau_{f}}}\right)$$
 (17)

辨识过程中,令喷射燃油流量的两次微小阶跃量不同,分别为 $\Delta \dot{m}_{f1}$ 和 $\Delta \dot{m}_{f2}$,则两次不同阶跃产生的响应为

$$\dot{m}_{f1}(t) = \dot{m}_{fi0} + \Delta \dot{m}_{fi1} \left(1 - X e^{-\frac{t}{\tau_f}} \right)$$
 (18)

$$\dot{m}_{j2}(t) = \dot{m}_{ji0} + \Delta \dot{m}_{ji2} \left(1 - X e^{-\frac{t}{\tau_j}} \right)$$
(19)

将式(18)除以式(19),得到

$$\frac{\dot{m}_{f1}(t)}{\dot{m}_{f2}(t)} = \frac{\dot{m}_{f0} + \Delta \dot{m}_{f1} \left(1 - Xe^{-\frac{t}{\tau_f}}\right)}{\dot{m}_{f0} + \Delta \dot{m}_{f1} \left(1 - Xe^{-\frac{t}{\tau_f}}\right)}$$
(20)

和传统辨识方法原理相同,因为喷射燃油流量 突变量微小,发动机仍然稳定工作在该工况下,可近 似认为进气流量没有发生改变,因此空燃比的变化 可以反映出实际进缸燃油流量的变化。令该过程中

图 5 模型参数的解耦辨识

进气流量始终为前。。(t),则式(20)可写成

$$\frac{\dot{m}_{f1}(t)}{\dot{m}_{f2}(t)} = \frac{\frac{m_{ap}(t)}{\dot{m}_{f2}(t)L_{th}}}{\frac{\dot{m}_{ap}(t)}{\dot{m}_{f1}(t)L_{th}}} = \frac{\lambda_{2}(t)}{\lambda_{1}(t)} = \frac{\dot{m}_{f0} + \Delta \dot{m}_{f1}(t)L_{th}}{\dot{m}_{f1}(t)L_{th}}$$

$$\frac{\dot{m}_{f0} + \Delta \dot{m}_{f1}\left(1 - Xe^{-\frac{t}{\tau_{f}}}\right)}{\dot{m}_{f0} + \Delta \dot{m}_{f1}\left(1 - Xe^{-\frac{t}{\tau_{f}}}\right)}$$
(21)

取 $t = t_1, t = t_2$,代入式(21),得到

$$\begin{cases} \frac{\lambda_{2}(t_{1})}{\lambda_{1}(t_{1})} = \frac{\dot{m}_{fi0} + \Delta \dot{m}_{fi1} \left(1 - Xe^{-\frac{t_{1}}{\tau_{f}}}\right)}{\dot{m}_{fi0} + \Delta \dot{m}_{fi2} \left(1 - Xe^{-\frac{t_{1}}{\tau_{f}}}\right)} \\ \frac{\lambda_{2}(t_{2})}{\lambda_{1}(t_{2})} = \frac{\dot{m}_{fi0} + \Delta \dot{m}_{fi1} \left(1 - Xe^{-\frac{t_{2}}{\tau_{f}}}\right)}{\dot{m}_{fi0} + \Delta \dot{m}_{fi2} \left(1 - Xe^{-\frac{t_{2}}{\tau_{f}}}\right)} \end{cases}$$
(22)

式(22)中, $\lambda_1(t)$ 和 $\lambda_2(t)$ 为喷油量发生两次 突变时测得的过量空气系数,假设跳变时刻t = 0。 从式(22)可以求解得到

$$X = \left[1 - \frac{\dot{m}_{f0}(\lambda_{2}(t_{1}) - \lambda_{1}(t_{1}))}{\lambda_{1}(t_{1})\Delta \dot{m}_{f1} - \lambda_{2}(t_{1})\Delta \dot{m}_{f2}}\right] e^{\frac{t_{1}}{\tau_{f}}}$$

$$\tau_{f} = \frac{t_{2} - t_{1}}{\ln\left(\frac{1 - \frac{\dot{m}_{f0}(\lambda_{2}(t_{1}) - \lambda_{1}(t_{1}))}{\lambda_{1}(t_{1})\Delta \dot{m}_{f1} - \lambda_{2}(t_{1})\Delta \dot{m}_{f2}}}{1 - \frac{\dot{m}_{f0}(\lambda_{2}(t_{2}) - \lambda_{1}(t_{2}))}{\lambda_{1}(t_{2})\Delta \dot{m}_{f1} - \lambda_{2}(t_{2})\Delta \dot{m}_{f2}}}\right]$$
(23)

特别的,取
$$t_1 = 0^+, t_2 = 1,$$
式(23)变为

$$\begin{cases}
X = 1 - \frac{\dot{m}_{f0}(\lambda_2(0^+) - \lambda_1(0^+))}{\lambda_1(0^+)\Delta \dot{m}_{f1} - \lambda_2(0^+)\Delta \dot{m}_{f2}} \\
\tau_f = -\frac{1}{\ln\left(\frac{1}{X}\left[1 - \frac{\dot{m}_{f0}(\lambda_2(1) - \lambda_1(1))}{\lambda_1(1)\Delta \dot{m}_{f1} - \lambda_2(1)\Delta \dot{m}_{f2}}\right]\right)}
\end{cases}$$
(24)

双方程法抛开喷射补偿,直接通过两次调整得 到参数真值,并且保留了传统方案不需对进气流量 进行估计的优点,是理论上的最佳方案。

5 结束语

针对油膜模型参数辨识问题,在原有辨识方法 的基础上,提出了模型参数的解耦自动辨识法,并通 过仿真验证了该方法的有效性。最后还提出了较为 理想和简洁的双方程辨识方法。提出的两种辨识方 法均可减少人工标定时间和降低标定成本。

参考文献

- 1 孟嗣宗,郭少平,张文海.发动机精确空燃比控制方法的研究[J].内燃机工程,1999,20(2):70~75.
- 2 Elbert Hendricks, Spencer C Sorenson. SI engine controls and mean value engine modeling [C]. SAE Paper 910258, 1991.
- 3 Aquino C F. Transient A/F control characteristics of the 5 liter central fuel injection engine [C]. SAE Paper 810494, 1981.
- 4 Elbert Hendricks, Thomas Vesterholm. The analysis of mean value SI engine models [C]. SAE Paper 920682, 1992.
- 5 Elbert Hendricks, Thomas Vesterholm, Patrick Kaidantzis, et al. Nonlinear transient fuel film compensation (NTFC) [C]. SAE Paper 930767, 1993.
- 6 朱航. 基于模型的过渡工况空燃比控制的应用研究[D]. 北京:清华大学,2003.
- 7 洪木南. 汽油机平均值模型分析及其应用研究[D]. 北京:清华大学,2008.

(上接第19页)

- 4 张选民. 轮式拖拉机发动机的振动测试分析[J]. 农业机械学报,2000,31(6):69~71. Zhang Xuanmin. Analysis of vibration test on engine of a wheeled tractor[J]. Transactions of the Chinese Society for Agricultural Machinery, 2000,31(6):69~71. (in Chinese)
- 5 诺顿 M P. 工程噪声和振动分析基础[M]. 盛元生,顾伟豪,韩建民,等,译. 北京:航空工业出版社,1993.
- 6 纪少波,程勇,唐娟,等. 柴油机缸盖振动加速度与缸内燃烧状况相关性分析[J]. 内燃机学报,2009,27(3):270~275.

Ji Shaobo, Cheng Yong, Tang Juan, et al. Study on relationship between vibration signal measured from cylinder head and combustion process[J]. Transactions of CSICE, 2009, 27(3):270~275. (in Chinese)

- 7 何学良,李疏松.内燃机燃烧学[M].北京:机械工业出版社,1990:285.
- 8 纪少波.基于柴油机缸盖振动加速度信号提取缸内燃烧过程信息的研究[D].济南:山东大学,2008. Ji Shaobo. On description of combustion process based on vibration acceleration signal measured from cylinder head[D]. Ji'nan;Shandong University, 2008. (in Chinese)
- 9 程勇,吴亚兰,纪少波,等. 基于振动信号的柴油机缸内燃烧状态估计方法[J]. 农业机械学报,2008,39(9):10~14. Cheng Yong, Wu Yalan, Ji Shaobo, et al. Estimation of combustion status in diesel engine based on vibration signal[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008,39(9):10~14. (in Chinese)