DOI:10.3969/j.issn.1000-1298.2010.06.025

苹果切片红外辐射干燥模型建立与评价*

林喜娜 王相友

(山东理工大学农业工程与食品科学学院,淄博 255049)

【摘要】 选择加热温度为 60℃,辐射功率为 750 W,辐射距离为 100 mm,物料厚度为 5 mm 时的红外辐射干燥 苹果切片试验数据作为实测值样本,基于 Matlab 软件,利用高斯一牛顿算法,对传统干燥模型进行非线性最小二乘 数据拟合求解,确定干燥系数。通过决定系数 R²、误差平方和(SSE)及均方误差的根(RMSE)等拟合优度评价指标 对各种干燥模型进行评价。结果表明,用 Modified Page equation-Ⅱ模型能够更好地预测和控制苹果切片红外辐射 干燥过程。

关键词:苹果 红外辐射 干燥模型 回归分析 评价 中图分类号:TS255.1 文献标识码:A 文章编号:1000-1298(2010)06-0128-05

Modeling and Evaluation of Infrared Radiation Drying for Apple Slices

Lin Xi'na Wang Xiangyou

(School of Agricultural and Food Engineering, Shandong University of Technology, Zibo 255049, China)

Abstract

The traditional drying models fitted to experimental data and the drying coefficients were determined by means of nonlinear least square based on the Matlab software using the Gauss – Newton algorithm. The experimental data from infrared radiation drying of apple slices were used as measured samples. The tests were performed with the materials temperature of 60° C, the radiation power of 750 W, the radiation distances of 100 mm and materials thickness of 5 mm. 15 different mathematical drying models were compared by some evaluation targets such as coefficient of determination (R^2), square sum of error (SSE) and root mean square error (RMSE). It showed that the Modified Page equation-II model could sufficiently predict and control the infrared radiation drying process of apple slices.

Key words Apple, Infrared radiation, Drying model, Regression analysis, Evaluation

引言

近年来,果蔬红外辐射加热干燥技术得到了较快的发展,实践证明它具有高效、节能、环保等优点^[1]。但果蔬红外辐射干燥是一个复杂的非稳态传热、传质过程,是热扩散、生物和化学等过程的综合体,它不仅受干燥条件的影响,且随物料种类、内部结构、物理化学性质及外部形状的不同存在明显差异^[2~3]。目前,人们对果蔬红外辐射干燥机理的认识还不够深刻。为了更精确预测和控制苹果片

红外辐射干燥过程,本文对苹果片红外辐射干燥进 行试验并对传统干燥模型进行拟合和评价。

1 干燥模型的发展

在干燥模型研究方面,本文总结国内外15种常用的经验、半经验干燥数学模型,用于定量地描述物料干燥规律,如表1所示^[4~12]。

传统干燥模型往往都是非线性方程,为了描述 果蔬红外辐射干燥规律,本文选择加热温度为60℃, 辐射功率为 750 W,辐射距离为 100 mm,物料厚度

收稿日期:2009-12-14 修回日期:2010-01-22

^{*} 山东省科技攻关计划资助项目(2008GG10009008)

作者简介:林喜娜,硕士生,主要从事果蔬红外干燥机理研究,E-mail: ytdxjy6@ sina. com

通讯作者: 王相友,教授,博士生导师,主要从事农产品加工与贮藏研究,E-mail: wxy@ sdut. edu. en

	衣」	十煤釣	(子侯空		
Tab. 1	Mathe	matical	models	of	drying

ᅮᄱᆇᆇᆇᆂᆱ

序号	模型方程式	模型名称
1	$M_R = \exp(-kt)$	Newton/Lewis
2	$M_R = \exp(-kt^n)$	Page
3	$M_R = \exp(\left(-kt\right)^n)$	Modified Page equation- I
4	$M_R = \exp(-k(t/L^2)^n)$	Modified Page equation- II
5	$M_R = a \exp(-kt) + c$	Logarithmic/Yagcioglu et al.
6	$M_R = a \exp(-kt)$	Henderson and Papis
7	$M_R = a \exp(-kt) + (1-a) \exp(-gt)$	Verma et al.
8	$M_R = a \exp(-kt^n) + bt$	Midilli and Kucuk
9	$M_R = a \exp(-kt) + (1-a) \exp(-kbt)$	Diffision approximation
10	$M_R = 1 + at + bt^2$	Wang and Sing
11	$M_R = a \exp(-kt) + b \exp(-k_1 t)$	Two-term
12	$M_R = a \exp(-kt) + (1-a) \exp(-kat)$	Two-term exponential
13	$t = a \ln M_R + b \left(\ln M_R \right)^2$	Thompson
14	$M_R = a \exp(-kt) + b \exp(-gt) + c \exp(-ht)$	Modified Henderson and Papis
15	$M_R = \exp(-ct/L^2)$	Simplified Fick's diffusion(SFFD) equation

注: M_k 表示水分比;t表示干燥时间;k表示干燥速度常数;a,b,c,g,h,n表示量纲干燥常数;L表示被干燥物料的厚度。

为 5 mm 时的红外辐射干燥苹果切片干燥试验数据 作为实测值样本,基于 Matlab 软件,利用高斯-牛顿 算法,对传统干燥模型进行非线性最小二乘数据拟 合求解,确定干燥常数。通过决定系数 R²、平均偏 差(SSE)及均方误差的根(RMSE)等拟合优度评价 指标对传统干燥模型进行比较和评价,确定适合苹 果片红外干燥的数学模型,从而更好地预测和控制 干燥过程。

2 材料与方法

2.1 试验材料

试验用的物料为苹果,采购于淄博市水果批发 市场,选用苹果大小中等,肉质致密,皮薄心小,干物 质含量高,充分成熟的金帅品种。试验之前将苹果 切成一定厚度的片状作为样品,并依次编号,然后将 苹果切片浸渍于浓度为0.005 mol/L,温度为4℃的 柠檬酸溶液中,浸泡30 min 取出,晾干以备试验。

2.2 测定指标

水分比用于表示一定干燥条件下物料还有多少 水分未被干燥去除,可以用来反映物料干燥速率的 快慢,其值可通过下式计算

$$M_{R} = (M_{i} - M_{e}) / (M_{0} - M_{e})$$
(1)

式中 M_t ——t 时刻的含水率,%

M_e——平衡含水率,%

为了简化计算,通常用 $M_R = M_L / M_0$ 代替式(1)计算 水分比的值。

2.3 干燥模型拟合优度评价指标

干燥过程必须合理地选择干燥模型来描述干燥

曲线,衡量模型的指标包括决定系数 *R*²、误差平方和(SSE)及均方误差的根(RMSE)等参数对方程进行评估^[13]。

2.3.1 决定系数

决定系数 R² 的大小决定了试验值与预测值之间的相关程度。当 R² 越接近 1 时,表示相关的方程式参考价值越高;相反,越接近零时,表示参考价值越低。R² 计算式为

$$R^{2} = \frac{\sum_{i=1}^{N} (M_{R_{i}} - M_{R_{\text{pre},i}}) (M_{R_{i}} - M_{R_{\text{exp},i}})}{\sqrt{\left[\sum_{i=1}^{N} (M_{R_{i}} - M_{R_{\text{pre},i}})^{2}\right] \left[\sum_{i=1}^{N} (M_{R_{i}} - M_{R_{\text{exp},i}})^{2}\right]}}$$
(2)

式中 *M_{R_{exp,i}*——实测水分比 *M_{R_{pre,i}*——预测水分比 *N*——试验次数}}

2.3.2 误差平方和

误差平方和(SSE)是预测值和实测值对应点的 误差平方和,SSE 越接近于零,说明模型选择和拟合 更好,SSE 计算式为

$$F_{\rm SSE} = \sum_{i=1}^{N} \left(M_{R_{\rm pre,i}} - M_{R_{\rm exp,i}} \right)^2$$
(3)

2.3.3 均方误差的根

均方误差的根(RMSE)又称为拟合标准误差或 回归标准误差,RMSE 的值接近于零表示拟合效果 很好。RMSE 计算式为

$$F_{\rm RMSE} = \left[\frac{1}{N} \sum_{i=1}^{N} (M_{R_{\rm pre,i}} - M_{R_{\rm exp,i}})^2\right]^{\frac{1}{2}}$$
(4)

3 基于传统模型建立苹果片红外干燥数学模型

基于 Matlab 软件,利用高斯-牛顿算法,选择加 热温度为 60℃,辐射功率为 750 W,辐射距离为 100 mm,物料厚度为 5 mm 时的红外辐射干燥苹果 切片干燥试验作为实测值样本,对15种传统干燥模型进行非线性最小二乘数据拟合,确定干燥常数。 拟合结果如图1所示。求解各模型如表2所示。 图1c、1d、1e、1h、1j的拟合效果较佳,图1k、1m、1n 与实测值不拟合,无法确定其干燥系数,因此无解。

 Fig. 1 Fitting curves between experimental values and values predicted by traditional models of drying

 (a) Newton 模型
 (b) Page 模型
 (c) Modified Page equation- I 模型
 (d) Modified Page equation- II 模型
 (e) Logarithmic 模型

 (f) Henderson and Papis 模型
 (g) Verma et al. 模型
 (h) Midilli and Kucuk 模型
 (i) Diffision approximation 模型
 (j) Wang and Sing 模

 型
 (k) Two-term 模型
 (l) Two-term exponential 模型
 (m) Thompson 模型
 (n) Modified Henderson and Papi 模型
 (o) SFFD 模型

4 结果与讨论

分别对上述 15 种传统干燥模型进行拟合求解, 传统模型的拟合效果均较佳,但为了确定最优的苹 果片红外辐射干燥模型,在此运用曲线拟合工具箱 提供的统计量评价指标对以上 12 种传统干燥模型 的拟合优度进行比较分析,得各干燥模型的拟合优 度统计量值如表 3 所示。通过对各模型的拟合图和 拟合优度统计量值综合分析,可得 Modified Page equation-II 的拟合最优,该模型的决定系数 *R*² 为 0.999 8,误差平方和(SSE)为0.000 221 8,均方误差 的根(RMSE)为0.003 98,且模型的拟合图较佳,因 此,该模型能够更好地描述苹果切片的红外辐射干 燥过程。

Tab. 2 l	Results	of	mathematical	models	of	drying
----------	---------	----	--------------	--------	----	--------

序号	模型名称	求解模型
1	Newton/Lewis	$M_R = \exp(-0.0244t)$
2	Page	$M_R = \exp(-0.106t^{1.2232})$
3	Modified Page equation- I	$M_R = \exp((-0.090\ 52t)^{0.2691})$
4	Modified Page equation- II	$M_R = \exp(-0.5430(t/25)^{1.2232})$
5	Logarithmic/Yagcioglu et al.	$M_R = 1.333 2 \exp(-0.0150t) - 0.3322$
6	Henderson and Papis	$M_R = 1.045 6 \exp(-0.025 6t)$
7	Verma et al.	$M_R = 1.7107 \exp(-0.0131t) - 0.7107 \exp(0.0037t)$
8	Midilli and Kucuk	$M_R = 0.998 3 \exp(-0.0164t^{1.0376}) - 0.0018t$
9	Diffision approximation	$M_R = 2.764 6 \exp(-0.011 3t) - 1.764 6 \exp(-0.006 5t)$
10	Wang and Sing	$M_R = 1 - 0.018 \ 67t + 8.94 \times 10^{-5} t^2$
11	Two-term	无解
12	Two-term exponential	$M_R = -2.350 3 \exp(0.001 4t) + 3.350 3 \exp(-0.003 3t)$
13	Thompson	无解
14	Modified Henderson and Papis	无解
15	Simplified Fick's diffusion(SFFD) equation	$M_R = \exp(-0.609 \ 1 t/25)$

表 3 典型干燥模型的拟合优度比较

Tab. 3	Comparison	of statistical	analysis on	the typical	modeling	of drving
					· · · · ·	· · ·

序号	模型名称	R^2	SSE	RMSE
1	Newton/Lewis	0.9736	0.022 54	0. 037 54
2	Page	0.9963	0.004 70	0.01769
3	Modified Page equation- I	0.9825	0.022 54	0. 038 77
4	Modified Page equation- II	0. 999 8	0.000 22	0. 003 98
5	Logarithmic/Yagcioglu et al.	0. 986 4	0.017 54	0. 034 19
6	Henderson and Papis	0.9834	0.058 52	0. 084 27
7	Verma et al.	0.9996	0.003 25	0. 039 72
8	Midilli and Kucuk	0.9968	0.003 88	0.01664
9	Diffision approximation	0. 995 9	0. 455 41	0. 587 22
10	Wang and Sing	0. 999 5	0.000 65	0.006 59
11	Two-term exponential	0. 981 5	0.025 41	0. 039 85
12	Simplified Fick's diffusion(SFFD) equation	0.9836	0.022 54	0. 037 54

5 结束语

借助于 Matlab 软件,运用非线性回归分析的方法分别对各种传统干燥模型进行了拟合、求解和分

析,通过拟合优度评价指标分别对各种模型进行比较研究,结果表明,Modified Page equation-II模型拟 合最优,能够更好地预测和控制苹果切片红外辐射 干燥过程。

参考文献

- 王相友,操瑞兵,孙传祝. 红外加热技术在农业物料加工中的应用[J]. 农业机械学报,2007,38(7):183~188.
 Wang Xiangyou, Cao Ruibing, Sun Chuanzhu. Application of infrared radiation technology on processing agriculture biological materials[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(7): 183~188. (in Chinese)
- 2 糜正瑜, 褚治德. 红外辐射加热干燥原理与应用[M]. 北京: 机械工业出版社, 1996.
- 3 王相友,林喜娜. 果蔬红外辐射干燥动力学的影响因素综述[J]. 农业机械学报,2009,40(10):114~120. Wang Xiangyou, Lin Xi'na. Influence factors of kinetics of infrared radiation drying for fruits and vegetables [J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(10):114~120. (in Chinese)
- 4 Gunhan T, Demir V, Hancioglu E, et al. Mathematical modelling of drying of bay leaves [J]. Energy Conversion and Management, 2005, 46(11~12): 1667~1679.
- 5 O'Callaghan J R, Menzies D J, Bailey P H. Digital simulation of agricultural dryer performance [J]. Journal of Agricultural Engineering Research, 1971, 16(3):223 ~ 244.

- 6 Zhang Q, Litchfield J B. An optimization of intermittent corn drying in a laboratory scale thin layer dryer [J]. Drying Technology, 1991, 9(1):383 ~ 395.
- 7 Rahman M S, Perera C O, Theband C. Desorption isoterm and heat pump drying kinetics of peas [J]. Food Research International, 1997,30(7): 485 ~ 491.
- 8 Verma L R, Bucklin R A, Endan J B, et al. Effects of drying air parameters on rice drying models [J]. Transactions of the ASAE, 1985,28(1):296 ~ 301.
- 9 Karathanos V T. Determination of water content of dried fruits by drying kinetics [J]. Journal of Food Engineering, 1999, 39(4):337 ~ 344.
- 10 Diamente L M, Munro P A. Mathematical modelling of hot air drying of sweet potato slices [J]. International Journal of Food Science & Technology, 1991, 26(1):99 ~ 109.
- 11 Diamente L M, Munro P A. Mathematical modelling of the thin layer solar drying of sweet potato slices [J]. Solar Energy, 1993, 51(4):271 ~ 276.
- 12 Midilli A, Kucuk H, Yapar Z. A new model for single layer drying [J]. Drying Technology, 2002, 20(7): 1503~1513.
- 13 苏金明, 阮沈勇, 王永利. MATLAB 工程数学 [M]. 北京: 电子工业出版社, 2005.
- 14 徐凤英,李长友,陈震. 荔枝在不同红外辐射源下真空干燥优化试验[J]. 农业机械学报,2009,40(4):147~150,106.
 Xu Fengying,Li Changyou, Chen Zhen. Optimization test of litchi vacuum drying under different infrared radiation sources
 [J]. Transactions of the Chinese Society for Agricultural Machinery, 2009,40(4):147~150,106. (in Chinese)
- 15 刘云宏,朱文学,马海乐.地黄真空红外辐射干燥模型[J].农业机械学报,2010,41(1):122~126. Liu Yunhong, Zhu Wenxue, Ma Haile. Model of vacuum infrared radiation drying on *Rehmanniae*[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010,41(1):122~126. (in Chinese)

(上接第 97 页)

- 9 Samolada M C, Papafotica A, Vasalos I A. Catalyst evaluation for catalytic biomass pyrolysis [J]. Energy& Fuels, 2000, 14(6): 1 161 ~ 1 167.
- 10 Lu Qinag, Li Wenzhi, Zhang Dong, et al. Analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) of sawdust with Al/SBA - 15 catalysts[J]. Journal of Analytical and Applied Pyrolysis, 2009, 84(2): 131 ~ 138.
- 11 Pattiya A, Titiloye J O, Bridgwater A V. Fast pyrolysis of cassava rhizome in the presence of catalysts [J]. Journal of Analytical and Applied Pyrolysis, 2008, 81(1): 72 ~ 79.
- 12 Antonakou E, Lappas A, Nilsen M H, et al. Evaluation of various types of Al-MCM 41 materials as catalysts in biomass pyrolysis for the production of bio-fuels and chemicals [J]. Fuel, 2006, 85(14~15); 2 202~2 212.
- 13 Adam J, Blazso M, Meszaros E, et al. Pyrolysis of biomass in the presence of Al-MCM 41 type catalysts [J]. Fuel, 2005, 84(12~13): 1494~1502.
- 14 Oasmaa A, Kuoppala E, Gust S, et al. Fast pyrolysis of forestry residue. 1. effect of extractives on phase separation of pyrolysis liquids [J]. Energy & Fuels, 2003, 17(1); 1~12.
- 15 Emsley M, Stevens G C. Kinetics and mechanisms of the low-temperature degradation of cellulose [J]. Journal of Wood Science, 1994, 1(1): 26 ~ 56.