DOI:10.3969/j.issn.1000-1298.2010.05.021

颗粒状冷水可溶玉米淀粉制备工艺优化与性质研究*

刘天一1 马 莺1 李启明1,2

(1. 哈尔滨工业大学食品科学与工程学院,哈尔滨 150090; 2. 新希望乳业控股有限公司,成都 610063)

【摘要】 采用球磨研磨法制备颗粒状冷水可溶玉米淀粉,在单因素试验基础上,采用 Box-Benhnken 中心组合 试验及响应面分析法,优化制备工艺,并通过 PLM、SEM 和 XRD 等仪器分析其性质。结果表明最佳制备工艺条件 为:球磨时间 3.24 h,球磨机转速 555 r/min,球料比 6.52:1,此时冷水溶解度的平均值可达到 57.95%;淀粉颗粒表 面变得粗糙,偏光十字消失,从多晶态转变成了非晶态,且淀粉糊浊度降低。

关键词:玉米淀粉 制备 工艺优化 冷水溶解度 球磨研磨

中图分类号: TS234 文献标识码: A 文章编号: 1000-1298(2010)05-0099-06

Optimum Technology and Properties of Granular-cold-water-soluble Maize Starch

Liu Tianyi¹ Ma Ying¹ Li Qiming^{1,2}

(1. College of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
2. New Hope Dairy Holdings Co., Ltd., Chengdu 610063, China)

Abstract

The method of planetary ball mill was applied to produce granular-cold-water-soluble maize starch. Based on the single-factor test, the technical conditions of the ball mill were optimized through Box-Benhnken center composite design and response surface methodology. The properties of granular-cold-water-soluble maize starch were analyzed using polarization microscopy, scanning electronic microscopy and X-ray diffraction. The results showed that the optimum technical conditions are that the milling time is 3. 24 h, the rotating speed is 555 r/min and the ratio of ball to material is 6. 52:1. At the optimum conditions, the average cold water solubility of granular-cold-water-soluble maize starch is 57. 95%. The granular morphology of granular-cold-water-soluble maize starches became coarse instead of smooth and Maltese crosses were disappeared, the crystalline structure of granular-cold-water-soluble maize starches were changed from polycrystalline granules to non-crystalline granules gradually, the turbidity of granular-cold-water-soluble maize starches decreased.

Key words Maize starch, Preparation, Process optimization, Cold-water solubility, Ball-milling

引言

制备颗粒状冷水可溶性淀粉(granular-coldwater-soluble starch,简称 GCWS)的工艺主要有双 流嘴喷雾干燥法^[1-2]、高温高压醇法^[3]、常压多元醇 法^[4]、微波-丙二醇法^[5]、酒精碱法^[6-7]、球磨研磨 法^[8-9]等。与球磨法相比,前几种方法制备的淀粉 冷水溶解度虽能达到 60% ~91%,但生产设备投资 和能耗极大,存在废水处理和产品质量不易控制等 问题;而球磨法的优势在于不但能提高淀粉的冷水 溶解度,还可提高淀粉的吸水性、糊化性质,并赋予 淀粉其他优良的性质,如较高的化学反应活性和生

收稿日期: 2009-06-24 修回日期: 2009-10-24

^{*} 黑龙江省"十一五"重大攻关基金资助项目(GA06B401-4)

作者简介:刘天一,博士生,主要从事食品科学研究, E-mail: ltyone80@ gmail.com

通讯作者:马莺,教授,主要从事食品科学研究, E-mail: maying@ hit. edu. cn

物反应活性、较大的比表面积等。

淀粉的种类对 GCWS 的冷水溶解度有较大的 影响,因玉米淀粉结构紧密,因此所得 GCWS 的冷 水溶解度也远低于小麦^[10]、马铃薯^[11]和木薯^[12]等 其他淀粉。在现有的球磨工艺中,要使玉米淀粉的 冷水溶解度达 60% 以上,研磨时间需 40 h 以上,耗 时较长。本文在单因素试验基础上,采用响应面分析 法对颗粒状冷水可溶玉米淀粉制备工艺进行优化。

1 材料与方法

1.1 试剂和仪器

玉米淀粉,长春黄龙食品工业有限公司。

QM - DK2 型行星式球磨机,南京大学仪器厂; BA300POL 型偏光显微镜,厦门 MOTIC 公司;S -3400N 型扫描电镜,日本 HITACHI 公司;D - max -2500 型 X 射线衍射仪,日本理学公司;HZS - H5 型 水浴振荡器,哈尔滨市东明医疗仪器厂;EMS - 9 型 磁力搅拌器,天津欧诺仪器仪表公司;LDZ5 - 2 型自 动平衡离心机,北京医用离心机厂;DHG - 9240A 型 电热恒温鼓风干燥箱,上海一恒科学仪器有限公司; UV - 754 型紫外可见分光光度计,上海光谱仪器有 限公司。

1.2 试验方法

1.2.1 颗粒状冷水可溶性淀粉的制备

用无水乙醇配制不同质量浓度的淀粉乳,将淀 粉乳和研磨球置于陶瓷球磨罐中,球磨罐内容积为 500 mL,保持填料率为10%~50%(以干淀粉计), 在球料比(研磨球与干淀粉的质量比)1~6、转速 100~550 r/min 下研磨不同时间,选用 Φ20 mm、 Φ10 mm 的两种研磨球(球数比1:2),制得样品密封 保存,并及时分析。

1.2.2 冷水溶解度(CWS)的测定

配制 0.02 g/mL 淀粉溶液,取 50 mL 于离心管 中在 20℃下震荡 30 min,以 3 000 r/min 离心20 min, 将上清液置于 130℃干燥箱中,干燥至恒重,得被溶 解淀粉量 A(g),其溶解度的计算公式为

$$C = \frac{A}{W} \times 100\%$$

式中 C——冷水溶解度

W——淀粉样品质量,g

1.2.3 试验设计

选用球磨机转速、球磨时间、球料比、填料率和 淀粉乳质量浓度5个因素做单因素试验,并在单因 素试验基础上,采用 Box-Behnken 中心组合设计模 型,选用球磨时间、球磨机转速、球料比3个主影响 因素为自变量,CWS(%)为响应值,设计了三因素 三水平共15个试验点的响应面分析试验。采用 SAS对试验结果进行响应面分析,建立数学模型,并 应用岭脊分析优化工艺参数。试验因素与水平编码 如表1所示。

表 1 Box-Behnken 设计试验因素水平 Tab. 1 Box-Behnken design test factors and levels

编码一	因素					
	球磨时间 x ₁ /h	球磨机转速 x ₂ /r·min ⁻¹	球料比 x ₃			
- 1	2.5	450	5:1			
0	3.0	500	6:1			
1	3.5	550	7:1			

1.2.4 颗粒形貌的观察

偏光显微镜(PLM):将质量浓度为 0.01 g/mL 的淀粉乳滴于载玻片上,于偏振光下观察和拍摄淀 粉颗粒偏光十字的变化情况。

扫描电镜(SEM):将一定量的淀粉充分分散于 固定在载物台上双面导电胶上,在真空条件下进行 镀金处理,加速电压为15 kV。

1.2.5 X 射线衍射分析

室温下用 Rigaku D - max - 2500 型 X 射线衍射 仪测定淀粉的结晶特性。测试条件:衍射角 2θ, 4°~37°,步长:0.02°,扫描速度 8(°)/min,积分 时间:0.2 min,靶型:Cu,管压、管流:40 kV、30 mA, 狭缝:DS 1°,SS 1°,RS 0.3 mm,滤波片:Ni。

1.2.6 浊度分析

将 0.01 g/mL 的淀粉悬液在 90℃ 水浴中搅拌 糊化 1 h,冷却至室温后于 4℃冰箱中贮存 17 d,以蒸 馏水为空白,在波长 640 nm 测量淀粉乳的吸光度, 每 24 h 测量一次,样品重复测量 3 次,取其平均值。

2 结果与分析

2.1 单因素分析

2.1.1 淀粉乳质量浓度

将定量研磨球和淀粉样品放入球磨罐内,球料 比为 6:1,500 r/min 下研磨 3 h,同时加入适量用无 水乙醇配制的淀粉乳(质量浓度为 0.1~1 g/mL), 考察其对 CWS 的影响,两者关系如表 2 所示。冷水 溶解度随着淀粉乳质量浓度的增大而增大,当不加 乙醇,干法研磨时 CWS 达到顶点,可看出 CWS 与淀 粉乳质量浓度呈正相关,因此本试验采用干法研磨 制备冷水可溶性淀粉。

2.1.2 填料率与球料比

球料比为 6:1,500 r/min 下干法研磨 3 h,球磨 罐内填料率分别为 10%、15%、20%、25%、30%、 35%、40%、50%,考察其对淀粉 CWS 的影响,得到

表 2 淀粉乳质量浓度对 CWS 的影响

Tab.2 Effects of concentration of starch solution on cold-water solubility

淀粉乳质量 浓度/g·mL ⁻¹	0. 1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
冷水溶解度/%	9.33 ± 0.64	14.93 ±0.78	20. 55 ± 0. 21	25.12 ±0.73	30.47 ± 0.51	36.72 ± 0.68	41.85 ± 0.63	45.63 ± 0.58	50.95 ± 0.58	55. 40 ± 0. 49

二者关系如图 1 所示。随填料率的增加 CWS 先缓 慢增加后迅速下降,当填料率为 25% 时出现拐点, 可见过大的填料率与 CWS 是呈负相关的,故确定填 料率为 25%,此时玉米淀粉具有最大 CWS。

(a) 填料率 (b) 球料比

固定填料率为25%,在500 r/min 干法研磨3h, 考察不同球料比对淀粉冷水溶解度的影响,结果也 如图1所示。随着球料比的增加,CWS也随之增 加,当球料比超过6:1时,CWS增加速度变缓,此时 单位研磨球接触的淀粉组分大大降低,既无法完全 被淀粉颗粒包覆,又易引起研磨球的磨损^[13],因此 本试验选择球料比6:1为宜。

2.1.3 球磨时间和球磨机转速

固定填料率为25%,球料质量比为6:1,分别在 500 r/min 干法研磨不同时间,考察其对淀粉 CWS 的影响。从图2可知,随着球磨时间延长,淀粉 CWS 提高,当球磨时间超过3h后,CWS 增加趋势 变缓,淀粉溶解度的大小与淀粉的分子结构、分子量 大小等有紧密的联系^[14],过长的球磨时间易引起淀 粉颗粒破碎或团聚不利于溶解度的提高,因此球磨 时间选择3h为宜。

固定填料率为25%,球料比为6:1,分别在 100、200、300、400、450、500、550 r/min下干法研磨 3 h,考察球磨机转速对CWS的影响,结果如图2所 示。随着球磨机转速提高,CWS随之提高,提高搅 拌速度能加快淀粉结晶度降低,促进淀粉溶解^[15], 但过高的速度不但破坏淀粉颗粒完整度也同时消耗 大量能量,因此球磨机转速选择500 r/min为宜。

2.2 响应面结果分析

在单因素试验基础上,以对 CWS 影响效果显著的3个因素——球磨时间、球磨机转速和球料比为自变量,CWS 为响应值 *Y*,按 Box-Behnken 模型做三因素三水平响应面试验,试验结果如表3所示。

表 3 响应面分析试验结果 Tab.3 Experimental design and results of response surface

试验序号	X_1	X_2	X_3	Y/%
1	- 1	- 1	0	45.056
2	- 1	1	0	50. 595
3	1	- 1	0	49.685
4	1	1	0	57.649
5	0	- 1	- 1	46.055
6	0	- 1	1	48.477
7	0	1	- 1	49. 741
8	0	1	1	57.732
9	- 1	0	- 1	45.838
10	1	0	- 1	49.969
11	- 1	0	1	48.975
12	1	0	1	52.601
13	0	0	0	55.823
14	0	0	0	56. 281
15	0	0	0	55.392

2.2.1 不同因素对 CWS 的影响

根据表 3 试验结果,利用 SAS 分析软件进行分析,得到回归方程为

 $Y = 55.832 + 2.43X_1 + 3.3055X_2 + 2.02275X_3 -$

3. 120 $625X_1^2$ + 0. 606 $25X_1X_2$ - 0. 126 $25X_1X_3$ -

1. 965 $125X_2^2$ + 1. 392 $25X_2X_3$ - 3. 365 $625X_3^2$

回归方程的方差分析及模型可信度分析结果见 表 4 和表 5。从表 4 可知,模型在 α = 0.01 水平上 回归显著;失拟项反映的是实验数据与模型不相符 的情况,p = 0.114 92 > 0.1,失拟不显著,因此模型 选择正确。同时,一次项、平方项、交叉项均对响应 值有显著性影响,各具体试验因子对响应值的影响 不是简单的线性关系,各因素对 CWS 的影响排序从 大到小依次为球磨时间、球料比、球磨机转速,且每 个因素对 CWS 的影响都达到极显著水平(p < 0.01)。由表5可知,复相关系数的平方 $R^2 = 0.980$ 7, 表明方程拟合较好。变异系数 $C_V = 1.959$ 514% 较 低,说明实验操作可信。综上说明回归方程给颗粒 状冷水可溶玉米淀粉提供了一个合适的模型。

表 4 回归方程方差分析表 Tab. 4 Variance analysis of regression equation

方差	自由	亚古和	お古	均古 F 店	$-(E > E^a)$	
来源	度	十刀和	均力	I' III.	$p(\mathbf{r} > \mathbf{r})$	
X_1	1	47.2392	47. 239 2	46. 704 07	0.001024 * *	
X_2	1	87.41064	87.41064	86. 420 45	0.000242 * *	
X_3	1	32. 732 14	32.73214	32. 361 35	0.002 34 * *	
X_1^2	1	35.9568	35.9568	35. 549 48	0. 001 899 * *	
$X_1 X_2$	1	1.470156	1.470156	1.453 502	0. 281 903	
$X_1 X_3$	1	0.063756	0.063756	0.063 034	0.811755	
X_2^2	1	14.25864	14.25864	14. 097 12	0. 013 231 *	
$X_2 X_3$	1	7.75344	7.75344	7.665 609	0. 039 427 *	
X_3^2	1	41.82436	41.82436	41.35058	0.001351**	
模型	9	257.3323	28. 592 47	28.26858	0.000915 * *	
一次项	3	167.382	55.79399	55. 161 96	0.000297 * *	
平方项	3	80. 662 93	26.88764	26. 583 06	0.001 686 * *	
交互项	3	9. 287 353	3.095784	3.060715	0.129 888	
误差项	5	5.057289	1.011458			
失拟项	3	4.662 007	1.554 002	7.862753	0. 114 92	
纯误差	2	0.395282	0. 197 641			
所有项	14	262. 389 6				

注:**差异极显著(p < 0.01),*差异显著(p < 0.05)。

2.2.2 各因素交互作用对 CWS 的响应面分析

通过响应面图形可以直观地看到各因素的交互 情况,圆形表示因素交互作用不显著,而椭圆形则与 之相反。从图3可知,球磨时间与球料比两项的等 高线图最圆,球磨时间与球磨机转速次之,说明它们

表5 模型的可信度分析

Tab. 5 Confidence analysis of the regression equation model

参数	数值
Y的平均值/%	51. 324 6
复相关系数 R ²	0. 980 7
校正后的 R ²	0. 946 0
误差的平方根(RMSE)	1.005713
Y 的变异系数(C_V)/%	1.959514

之间交互作用对 CWS 的影响小于前者,而球磨机转 速与球料比两项的响应面陡峭,说明这两个因素交 互作用的影响最大。

2.2.3 最佳工艺参数的确定

为确定各因素的最佳取值,通过 SAS 软件进行 岭脊分析,得出回归模型存在最大值点,Y 的最大估 计值为 58.76%,稳定点(X_1, X_2, X_3)的编码值为 (0.486,1.100,0.518)。与之对应的实际值为球磨 时间 3.24 h,球磨机转速 555 r/min,球料比 6.52:1。 在此优化条件下共进行 3 次平行验证试验,试验结 果冷水溶解度的平均值(57.95 ± 0.30)%,与预测 值 58.76% 非常接近。

2.3 淀粉颗粒形貌分析

不同 CWS 的淀粉颗粒偏光十字照片如图 4 所示,原玉米淀粉颗粒上能看到非常明显的以脐点为中心的偏光十字,随着 CWS 的增加,淀粉样品的偏光十字呈现逐渐减少的趋势,当 CWS 达到 57.95%时淀粉颗粒的偏光十字几乎完全消失。偏光十字的出现是因为淀粉颗粒内部存在着两种不同结构,即分子链有序排列的结晶结构和分子链无序排列的无定形结构;因两种结构在密度和折射率上存在差别进而产生各向异性现象,从而在偏振光下出现偏光十字现象^[16]。经球磨法处理后所得样品,偏光十字几乎全部消失,说明此样品已变为无定形态。

不同 CWS 的扫描电镜图如图 5 所示。从图中 可以看出,玉米原淀粉表面光滑,颗粒呈圆形或多角 形,而不同溶解度的淀粉颗粒表面出现不同程度的

Fig. 3 Response surface of the cold-water solubility

 Fig. 4
 PLM of starch with different cold-water solubility

 (a) 原淀粉
 (b) 13.28%
 (c) 34.85%
 (d) 57.95%

裂痕,随着 CWS 的增加,颗粒形貌的变化程度加剧, 颗粒变得粗糙,但仍然保持颗粒的外形,说明球磨法 制备颗粒状冷水可溶淀粉的工艺对淀粉的颗粒形貌 影响不大。这是由于球磨过程更多的是破坏淀粉的 结晶结构,导致颗粒表面能增加,从而促进颗粒 CWS 的大幅度提升^[17]。

2.4 X-射线衍射分析

图 6 为不同 CWS 玉米淀粉样品的 X 射线衍射 图。由图可知,玉米原淀粉颗粒结晶结构为典型的 A 型图谱,其在 X 射线衍射图谱上的特征峰对应的 衍射角分别为 15.28°、17.32°、18.10°及 22.98°^[18]。 随着淀粉 CWS 增大,衍射图中的尖峰衍射强度逐渐 减弱,当 CWS 达到 57.95% 时,尖峰衍射特征完全 消失,整条曲线变成一个馒头峰,为典型的无定形结 构衍射曲线,表明此时淀粉已从多晶形态转为无定 形态。这是由于球磨研磨导致了淀粉颗粒层状结构 中层间质点结和力减弱,晶体的晶格有序化程度逐渐降低,无定形化程度越来越大^[19],最后形成非晶态层,使无定形区增加,结构趋于无序化,促进了水分子和淀粉分子的结合,从而大大提高了淀粉的冷水溶解度。

2.5 浊度分析

从图 7 中可以看出,随着淀粉 CWS 的增加,淀 粉糊的浊度下降,透明度增加;且不同样品的浊度都 随着贮藏时间的延长而逐渐增大。淀粉糊的浊度不 但与颗粒大小有关,还与颗粒膨胀能力、浸出直链、 支链淀粉含量、淀粉直链和支链链长以及淀粉链在 分子内和分子间结合方式等有关。因原淀粉颗粒结 构相对致密,膨胀度小,在沸水中从开始吸水膨胀到 完全溶胀需要相当长的时间,对光的阻碍大,其吸光 度高而浊度大;而颗粒状冷水可溶淀粉颗粒发生形 变,且颗粒晶体结构逐渐消失,在水中易成为伸展的 分子状态,对光的反射减小,吸光度小而表现出较低 的浊度。因此,与原淀粉相比,颗粒状冷水可溶淀粉 的浊度远低于原淀粉。

3 结束语

通过响应面分析法优化了颗粒状冷水可溶性玉 米淀粉的制备工艺,最佳制备工艺条件为:球磨时间 3.24 h,球磨机转速 555 r/min,球料比 6.52:1,此时 冷水溶解度的平均值可达 57.95%。不同 CWS 的 颗粒状冷水可溶玉米淀粉样品,颗粒仍保持完整,但 其表面不再光滑而变得粗糙,且随着 CWS 的提高, 淀粉样品的偏光十字呈现逐渐减少的趋势。X 射线 衍射中的尖峰衍射逐渐消失,淀粉从多晶态转为无 定形态。颗粒状冷水可溶玉米淀粉糊的浊度随着冷 水溶解度的提高而降低,并与原淀粉一样都随着贮 藏时间的增加而提高。

参考文献

- 1 Pitchon E, O'Rourke J D, Joseph T. Process of cooking or gelatinizing materials: US, 4280851[P]. 1981-07-28.
- 2 Rajagopalan S, Seib P A. Properties of granular cold-water-soluble starches prepared at atmospheric pressure [J]. Journal of Cereal Science, 1992, 16(1): 13 ~ 28.
- 3 Eastman J E, Moore C O. Cold water soluble granular starch for gelled food composition: US, 4465702[P]. 1984-08-14.
- 4 RajagoPalan S, Seib P A. Process of the preparation of granular cold water soluble starch: US,5037929[P]. 1991-08-06.
- 5 周志,罗祖友,吴承金,等. 微波-丙二醇处理制备冷水可溶性马铃薯淀粉的工艺研究[J]. 食品科学, 2008, 29(10): 251~253.

Zhou Zhi, Luo Zuyou, Wu Chengjin, et al. Study on processing technology of cold-water-soluble potato starch by microwave 1,3-propanediol treatment[J]. Food Science, 2008, 29(10): 251 ~ 253. (in Chinese)

- 6 Chen J, Jane J. Preparation of granular cold-water soluble starches by alcoholic-alkaline treatment [J]. Cereal Chemistry, 1994, 71(6): 618 ~ 622.
- 7 Chen J, Jane J. Properties of granular cold-water soluble starches prepared by alcoholic-alkaline treatment [J]. Cereal Chemistry, 1994, 71(6): 623 ~ 626.
- 8 王洋,眭红卫,刘廷国,等.颗粒状冷水可溶性淀粉的新法制备及其结构初步研究[J].铸造,2005,54(11):1069~1072.
- 9 胡莉莉,张正茂,郭蕾,等. 球磨条件对水溶性大米淀粉理化特性的影响[J]. 食品科技, 2007(8): 94~97. Hu Lili, Zhang Zhengmao, Guo Lei, et al. Effects of water soluble rice starch on ball miller condition[J]. Food Science and Technology, 2007(8): 94~97. (in Chinese)
- 10 梅仕峰,张国权,罗勤贵.小麦颗粒状冷水可溶淀粉的制备工艺条件优化[J].粮食与饲料工业,2008(7):20~22.
- 11 高群玉,蔡丽明,陈惠音,等. 颗粒状冷水可溶马铃薯淀粉的制备及性质研究[J]. 食品工业科技, 2007, 28(3): 117~120.
 Gao Qunyu, Cai Liming, Chen Huiyin, et al. Preparation and properties of granular cold-water-soluble potato starch[J].
 Food Industry Technology, 2007, 28(3): 117~120. (in Chinese)
- 12 黄祖强,童张法,黎铉海,等. 机械活化对木薯淀粉的溶解度及流变学特性的影响[J]. 高校化学工程学报, 2006, 20(3):449~454.

Huang Zuqiang, Tong Zhangfa, Li Xuanhai, et al. Effects of mechanical activation on cold-water-solubility and rheological properties of cassava starch [J]. Journal of Chemical Engineering of Chinese Universities, 2006, 20(3): 449 ~ 454. (in Chinese)

- 13 马明亮,郑修麟,刘新宽,等. 球料比对高能球磨固态还原燃烧反应的影响[J]. 热加工工艺, 2002,31(2): 18~20.
- Clement A O, Vasudeva S. Physico-chemical properties of the flours and starches of two cowpea varieties (Vigna unguiculata (L.) Walp)[J]. Innovative Food Science & Emerging Technologies, 2008, 9(1): 92 ~ 100.
- 15 Núñez-Santiago M C, Bello-Péreza L A, Tecante A. Swelling-solubility characteristics, granule size distribution and rheological behavior of banana (*Musa paradisiaca*) starch[J]. Carbohydrate Polymers, 2004, 56(1): 65 ~75.
- 16 Tang H, Mitsunaga T, Kawamura Y. Molecular arrangement in blocklets and starch granule architecture [J]. Carbohydrate Polymers, 2006, 63(4): 555 ~ 560.
- 17 Martínez-Bustos F, López-Soto M, San Martín-Martínez E, et al. Effects of high energy milling on some functional properties of jicama starch (*Pachyrrhizus erosus* L. Urban) and cassava starch (*Manihot esculenta* Crantz) [J]. Journal of Food Engineering, 2007, 78(4): 1212 ~ 1220.
- 18 Morrison W R, Tester R F, Gidley M J. Properties of damaged starch granules. II: crystallinity, molecular order and gelatinisation of ball-milled starches[J]. Journal of Cereal Science, 1994, 19(3): 209 ~ 217.
- 19 Tamaki S, Hisamatsu M, Teranishi K, et al. Structural change of maize starch granules by ball-mill treatment[J]. Starch-Stärke, 1998, 50(8): 342 ~ 348.
- 20 Singh J, Singh N. Studies on the morphological, thermal and rheological properties of starch separated from some Indian potato cultivars[J]. Food Chemistry, 2001, 75(1): 67 ~ 77.