doi:10.6041/j.issn.1000-1298.2020.12.039

基于神经网络 PID 的丘陵山地拖拉机姿态同步控制系统

张锦辉¹ 李彦明¹ 齐文超¹ 刘成良¹ 杨福增² 李政平³ (1.上海交通大学机械与动力工程学院,上海 200240; 2.西北农林科技大学机械与电子工程学院,陕西杨凌 712100;

3. 山东五征集团, 日照 276800)

摘要:针对现有丘陵山地拖拉机姿态调整精度和可靠性难以满足实际使用需求的问题,基于神经网络 PID 算法设计了丘陵山地拖拉机车身和机具姿态同步控制系统。根据车身和机具不同的姿态调整要求,设计了相应的控制系统,并对其进行动力学建模,进而采用了基于神经网络 PID 的同步控制算法。以常规的 PID 控制算法作为对照,进行了仿真分析,仿真结果表明,基于神经网络 PID 算法的同步控制系统有效,且控制性能优于 PID 控制算法。在固定坡度路面和随机坡度路面上进行了作业试验,结果表明,其于神经网络 PID 控制算法的精度和稳定性均优于 PID 控制算法:在固定坡度路面上,车身横向倾角最大误差为 0.864 0°,左右摆角绝对值差最大误差为 0.960 0°,机具横向倾角最大误差为 1.762 0°。说明本文提出的方法具有较好的控制精度和稳定性,能够满足丘陵山地拖拉机的实际使用需求。

关键词:拖拉机;丘陵山地;姿态;同步调整;神经网络 PID 中图分类号:S219.85 文献标识码:A 文章编号:1000-1298(2020)12-0356-11

Synchronous Control System of Tractor Attitude in Hills and Mountains Based on Neural Network PID

ZHANG Jinhui¹ LI Yanming¹ QI Wenchao¹ LIU Chengliang¹ YANG Fuzeng² LI Zhengping³

(1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
 Shandong Wuzheng Group, Rizhao 276800, China)

Abstract: Synchronous adjustment of the body and implement posture of hilly mountain tractors helps to improve the safety and efficiency of their operations. The current research on the attitude adjustment of hilly tractors is mainly focused on the body or implement attitude control. Its accuracy and reliability are difficult to meet the actual requirements. A synchronous control system for tractors in hilly and mountainous areas was designed based on the neural network PID algorithm. Specifically, according to the different attitude adjustment requirements of the body and implement, a corresponding attitude adjustment system was designed respectively and its dynamics was modeled. And then a synchronous control algorithm based on neural network PID was adopted. Comparisons with the conventional PID control algorithm was conducted, and simulation analysis was performed. The simulation results verified the effectiveness of the proposed neural network PID algorithm, and its control performance was better than that of the PID control algorithm. Finally, experimental verifications were carried out on fixed-slope and random pavement operations. The experimental results showed that the accuracy and stability of the proposed neural network PID control method were better than those of the PID control method. On a road with a fixed slope of about 14° , the maximum error of the vehicle lateral inclination angle was 0.8640°, the maximum error of the absolute value difference of the left and right swing mechanism was 0.9600° , and the maximum error of the machine lateral inclination angle was 0.649 7°; the vehicle lateral

收稿日期: 2020-03-17 修回日期: 2020-05-27

基金项目:国家重点研发计划项目(2016YFD0700505)

作者简介:张锦辉(1995—),男,博士生,主要从事嵌入式软硬件和智能控制研究,E-mail: jinhuizhang0211@163.com

通信作者:李彦明(1971—),男,副教授,主要从事非结构化环境下智能装备自动驾驶与自主作业研究,E-mail: ymli@ sjtu. edu. cn

inclination was the largest on a random slope road, the error was 2.874 0°, the maximum error of the absolute value of the swing angle of the left and right swing mechanism was 4.280 0°, and the maximum error of the machine lateral inclination angle was 1.762 0°. It can be seen that the proposed method had good control accuracy and stability, and can meet the actual needs of hilly and mountain tractors. **Key words**: tractor; hills and mountainous; attitude; synchronous adjustment; neural network PID

0 引言

我国丘陵山地地形分布广泛,其面积占陆地总 面积的43%以上。由于缺乏丘陵山地的农业机械, 因此给农业生产带来了诸多不便^[1]。丘陵山地坡 度一般为6°~15°,拖拉机作业时容易导致耕深不 均匀和发生侧翻,影响了作业效率和农作物的生 长^[2]。拖拉机在路面崎岖的丘陵山区作业时,根据 丘陵山地的作业环境特点,设计车身横向姿态调整 系统能够有效提高驾驶舒适性和安全性,设计机具 横向调整系统能够使机具与路面保持水平状态,有 助于保证耕深均匀,提高作业效率和作业质量^[3]。

目前,国内外对丘陵山地机械调整系统的研究 主要集中在车身调平方面,对后桥机具^[4-8]作业姿 态的同步控制研究尚处于起步阶段。在车身调平方 面,COLOMBO 等^[9]研究的自动调平系统通过一套 液压气动悬架来保证拖拉机驾驶室的水平状态。 PIJUAN 等^[10]研究的悬挂机构可以主动调节自身高 度,进而进行底盘调平,但控制精度较低。文 献[11-15]研究了一种适用于微型履带山地拖拉 机的液压差高机构,采用 PID 算法实时计算机构的 期望位置,实现车身调平。胡春辉等^[16]设计了一种 应用于农田清平机的三点调平系统,并进行了试验 验证,其精度和速度均较为理想。在机具姿态调整 方面,邵明玺等^[2]提出了基于模糊 PID 控制的双液 压缸横向位姿调整系统,通过液压缸活塞位移带动 机具产生横向角度,以实现机具与地面的平行,但 该系统简单使用车身倾角替代地面倾角,难以满 足实际使用需求。刘林[17]设计的机具调平系统实 现了机具的全自动调平,提高了系统的可靠性,但 由于使用电磁换向阀来控制液压缸运动,其控制 精度有待提高。

目前,国内外研究主要单独针对车身或者机具 姿态控制展开,缺乏对车身和机具同步姿态控制的 研究。同时,现有丘陵山地拖拉机姿态主动调整系 统姿态调整方案功能单一、适应性和实用性有限,难 以满足复杂多变的作业需求。针对车身和机具姿态 实时调整需求,本文采用神经网络 PID 算法设计丘 陵山地拖拉机车身--机具姿态同步控制系统,进行仿 真和试验,并与常规的 PID 算法进行对比。

1 控制系统设计及运动学分析

丘陵山地拖拉机姿态控制系统示意图如图1所示。由于拖拉机整车重心、驾驶室位置均位于后驱动桥,且前驱动桥为随动系统,前、后桥由一单自由度旋转轴连接。因此,本文设计的车身横向调平装置安装在后驱动桥,不会对前轮造成影响。

Fig.1Schematic of tractor attitude control system1. 左偏心摆动机构2. 后驱动桥3. 左轮中心4. 车身5. 上拉杆6. 旋转轴7. 旋转液压杆8. 旋转架9. 机具

车身横向姿态调整系统通过偏心摆动机构的转动,带动安装在偏心摆动机构末端的车轮中心,产生相对位移 h,进而使后驱动桥产生横向角,调整车身保持横向水平。

机具横向姿态调整系统以计算得到的实时路面 倾角作为目标倾角,通过旋转液压缸的伸缩运动,带 动旋转架、机具绕旋转轴转动,产生横向角度,使机 具横向倾角与路面保持平行。

1.1 车身横向姿态调整系统设计

车身横向姿态调整系统安装实物图如图 2a 所示,其核心组成部件包括车身横向倾角传感器和液 压马达驱动的左、右偏心摆动机构,及对应的摆角传 感器。车身横向倾角传感器安装于后驱动桥箱上方 车身,左、右摆动机构分别安装于半轴套管与车轮之 间,左、右摆角传感器安装于对应的摆动机构。

摆动机构示意图如图 2b 所示,摆动机构由 2 个 比例阀控液压马达控制其摆动速度和摆动方向。 左、右摆角传感器安装平面与水平面之间的夹角分 别为左、右摆角 α_1 和 β_1 ,半轴中心与驱动轴中心连 线的长度为摆动半径 l_{\circ} 为保证车辆正常行驶,两侧 摆角应大小相同,方向相反,摆角范围为(-80°, 80°)。由图 2b 可知,当 α_1 和 β_1 均为0°时,驱动轴轴 心与后驱动桥轴心在同一平面上,此时,在垂直方向

Fig. 2 Attitude adjustment mechanism diagrams 1. 左半轴套管 2. 车身横向倾角传感器 3. 右半轴套管 4. 左 摆角传感器 5. 左侧摆动机构 6. 右侧摆动机构 7. 右摆角传 感器 8. 左轮中心 9. 右轮中心 10. 半轴中心 11. 后驱动桥箱

上的相对位移 h = 0。当摆动机构转动一定角度时, 驱动轴与半轴中心会产生一定的高度差 h,以左轮 为例,此时有

$$h = l\sin\alpha_1 \tag{1}$$

图 2c 给出了车辆未进行姿态调整时,简化后的 车身姿态调整系统示意图。图中,点 A、B 分别表示 左、右半轴中心,两点之间的距离为后桥长度 L,车 身横向倾角传感器安装平面与水平面的夹角为 θ₁。

$$H = L\sin\theta_1 \tag{2}$$

为保持后桥水平,需驱动摆动机构转动一定角度, 使点A、B分别上升、下降H/2,即h=H/2,如图2d所示。控制器通过CAN总线实时接收车身横向倾角 传感器和左、右摆角传感器的数据,计算比例阀的输 出电流,从而控制摆动机构转过一定的摆角,实现车 身横向调平控制。

1.2 机具横向姿态调整系统设计

机具倾角需要在作业过程中随地形起伏进行调 节,使之与当前的地面倾角基本一致。拖拉机、机具 姿态调整机构、机具的安装实物图如图 3a 所示。其 主要组成部件包括机具横向倾角传感器、旋转液压 缸和旋转架。机具姿态调整机构示意图如图 3b 所 示,调整机构通过上拉杆和牵引架上安装的两个下 拉杆与拖拉机用球销进行连接,机具通过上连接杆 和两个下连接板与调整机构用球销进行连接,下连 接板通过定位螺栓安装于旋转架。如图 3c 所示,在 旋转架一侧安装机具横向倾角传感器,用于实时检 测机具的实际倾角,机具横向倾角传感器实时测量 机具的实际倾角,其安装平面与水平面的夹角即为 机具横向倾角 γ_1 ,上转轴与旋转轴中心连线长度为 S_1 ,转轴连杆长度为 S_2 ,旋转液压缸及其连杆总长度 为 S_3 。由几何关系可得

$$S_3 = \sqrt{S_1^2 + S_2^2 - 2S_1 S_2 \sin \gamma_1}$$
(3)

图 3 机具姿态调整机构实物图与示意图

Fig. 3 Schematics of attitude adjustment mechanism of implement

1. 上拉杆 2. 上连接杆 3. 下连接板 4. 机具横向倾角传感器 5. 旋转液压缸 6. 旋转轴 7. 旋转架 8. 牵引架 9. 下拉杆 10. 转轴连杆

旋转液压缸的直线伸缩通过转轴连杆和旋转轴带 动旋转架旋转,进而控制悬挂的机具转动,实现机具姿 态控制,机具横向倾角调整范围为(-20°, 20°)。

为保证机具与地面的横向平行关系,机具的

目标倾角应等于当前的路面倾角。控制器接收机 具横向倾角传感器测得的角度,结合车身横向倾 角传感器和左、右摆角传感器的数据,计算比例阀 的输入电流,从而控制机具转动,实现机具姿态 控制。

1.3 同步控制原理

控制系统框图如图 4 所示,图中 θ 为车身目标 倾角,在本系统中 $\theta = 0^{\circ}$, θ_2 为根据左、右摆动机构摆

角计算出的车身与路面夹角, α_0 为左摆动机构目标 摆角; β_0 为右摆动机构目标摆角;机具的目标倾角与 路面实际倾角相等, I_{α} 、 I_{β} 、 I_{γ} 分别为左比例阀、右比 例阀、机具比例阀的输入电流。

基于神经网络 PID 算法的同步控制原理为:主 控器接收车身横向倾角传感器和左、右摆角传感器 的数据,计算两侧摆动机构应该摆动的角度;同时, 据此计算出当前路面倾角,作为机具控制系统的目 标倾角 θ_0 ,且有

$$\theta_0 = \theta_1 + \theta_2 \tag{4}$$

由系统控制框图车身姿态控制系统的外环神经 网络 PID 和机具控制系统的神经网络 PID 控制器使 执行机构运动到目标位置,车身姿态控制系统的内 环 PID 控制器保证了在调整过程中,两侧摆动机构 摆角满足大小相等、方向相反的要求。

其中,结合式(1)、(2)可得出倾角转摆角换算器和摆角转倾角换算器计算公式为

$$L\tan(\theta - \theta_1 + \theta_2) = l\sin\alpha_0 - l\sin\beta_0 \qquad (5)$$

$$l\sin\alpha_1 - l\sin\beta_1 = L\tan\theta_2 \tag{6}$$

结合式(3)可得出机具倾角-液压缸位移换算器计算公式为

$$y = \sqrt{S_1^2 + S_2^2 - 2S_1S_2\sin\theta_0} - \sqrt{S_1^2 + S_2^2 - 2S_1S_2\sin\gamma_1}$$
(7)

式中 y——液压缸位移,m

2 系统建模与控制器设计

2.1 系统建模

同步控制系统通过控制比例阀控马达系统和比 例阀控液压缸系统,对车身姿态和机具姿态进行调 整。为便于控制器设计和仿真,需对液压马达和液 压缸系统进行数学建模。

为简化讨论,建模过程中的阀系数取值均取零位 系数,将固有频率较高的电液比例伺服阀近似看做比 例环节。车身、机具等机械结构转动产生的负载力矩 (或负载力)均计算在总负载力矩(或总负载力)上。

2.1.1 阀控液压马达系统模型

对于系统中惯量较大的阀控液压马达,不考虑 弹性负载的作用,其数学模型可表示为

$$\theta_{m}(s) = \frac{\frac{K_{q1}K_{sv}}{D_{m}}I(s) - \frac{K_{ce}}{D_{m}}\left(1 + \frac{V_{t}}{4\beta_{e}K_{ce}}s\right)T_{L}(s)}{s\left(\frac{s^{2}}{\omega_{h1}^{2}} + \frac{2\xi_{h1}}{\omega_{h1}}s + 1\right)}$$
(8)

$$\boldsymbol{\omega}_{h1} = \sqrt{\frac{\mathbf{4}\boldsymbol{P}_e \boldsymbol{D}_m}{\boldsymbol{J}_m \boldsymbol{V}_t}} \tag{9}$$

$$\xi_{h1} = \frac{K_{ce}}{D_m} \sqrt{\frac{\beta_e J_m}{V_t} + \frac{B_m}{4D_m}} \sqrt{\frac{V_t}{\beta_e J_m}}$$
(10)

式中 ω_{h1} ——液压马达液压固有频率, rad/s

- ξ_{h1} ——液压马达液压阻尼比
- I——通人比例电磁铁电流,A
- *T_L*----液压马达和车身折算在马达轴上的总 负载力矩,N·m
 - θ_m ——液压马达转角,rad
- *K*_{q1}——阀控马达系统中比例阀的流量增益 系数

 B_m ——液压马达粘性阻尼系数 K_{sv} ——比例阀比例系数 β_e ——油液有效体积弹性模量,Pa D_m ——液压马达理论排量,m³/rad J_m ——折算到马达轴上的总惯量,kg·m² V_i ——阀腔、马达腔与连接管道总容积,m³ K_{ce} ——阀控液压马达系统总流量压力系数, m⁵/(N·s)

考虑到后车身质量大,转动惯量大,因此需考虑 液压马达轴上的总负载力矩 T_L在车身横向调平过 程中,由于车身转动产生的力矩。后车身受力简图 如图 5 所示。

图 5 后车身受力简图 Fig. 5 Schematic of rear body force

由力平衡方程和力矩平衡方程结合式(1)可得 左、右液压马达负载力矩分别为

$$T_{L1} = \left(\frac{1}{2}m_c g + \frac{J_c \alpha_c}{L}\right) l \cos \alpha_1 \tag{11}$$

$$T_{I2} = \left(\frac{1}{2}m_c g - \frac{J_c \alpha_c}{L}\right) l \cos\beta_1 \tag{12}$$

式中 *T*₁₁ —— 左液压马达负载力矩, N·m *T*₁₂ —— 右液压马达负载力矩, N·m

m_c——后车身质量,kg

 J_c ——后车身转动惯量,kg·m²

 α_{s} ——车身横向倾斜角加速度, rad/s²

2.1.2 阀控液压缸系统模型

阀控液压缸系统中被控对象为非对称液压缸, 考虑有杆腔和无杆腔的有效活塞面积不同,不考虑 弹性负载和液压缸外泄漏,等效活塞面积A_{me}取有杆 腔和无杆腔有效活塞面积的平均值,可得当 ý > 0 时,阀控液压缸系统的数学模型为^[18-19]

$$y(s) = \frac{\frac{K_{q2}K_{sv}}{A_{me}}I(s) - \frac{K_{l}}{A_{me}}\left(\frac{V_{e}}{4\beta_{e}K_{l}} + 1\right)f(s)}{s\left(\frac{s^{2}}{\omega_{h2}^{2}} + \frac{2\xi_{h2}}{\omega_{h2}}s + 1\right)}$$
(13)

其中
$$\omega_{h2} = \sqrt{\frac{4\beta_e A_1 A_{me}}{V_e m}}$$
 (14)

$$\xi_{h2} = K_t \sqrt{\frac{m\beta_e}{A_1 A_{me} V_e}} + \frac{B_p}{4} \sqrt{\frac{V_e}{m\beta_e A_1 A_{me}}} \qquad (15)$$

式中 ω_{h2} ——液压缸液压固有频率, rad/s

- ξ_{h2} ——液压缸液压阻尼比
- m——活塞及负载总质量,kg
- f——机具及旋转架折算在活塞上的总负载,N
- *K_{q2}*——阀控液压缸系统中比例阀的流量增 益系数

A1----无杆腔活塞有效面积,m2

B_p——活塞及负载粘性阻尼系数

K₁——阀控液压缸系统总流量压力系数

同理,考虑到旋转架等机械结构的转动惯量,由 力矩平衡方程,结合式(3)可得,作用在液压缸活塞 上的总负载*f* 为

$$f = \frac{J_{\iota}\alpha_{\iota}\sqrt{S_{1}^{2} + S_{2}^{2} - 2S_{1}S_{2}\sin\gamma_{1}}}{S_{1}S_{2}\cos\gamma_{1}}$$
(16)

式中 J_{ι} ——机具及旋转架转动惯量,kg·m²

 α_i ——机具横向倾斜角加速度, rad/s²

2.2 BP 神经网络 PID 控制器设计

控制器通过调节比例系数 K_p、积分系数 K_i、微 分系数 K_d,改变 3 个单元的增益,提高系统的动态 性能和稳态性能。

常规的 PID 控制器参数整定方法包括基于参数 最优化的整定方法、基于对象参数辨识的整定方法 等^[20],利用 2.1 节建立的被控对象数学模型,通过 控制器参数与系统动态和稳态性能之间的定性关 系,采用试验法进行参数整定^[21]。具体步骤为:

(1)为减少需整定的参数,采用 PI 控制器,即 $K_d = 0$,为保证系统稳定,比例系数 K_p 的初始值不能 太大。

(2)给出阶跃输入信号,如阶跃响应超调量过 大或系统发生振荡,无法收敛于期望输出,则减小 *K_p*,增大*K_i*,如没有超调,但响应缓慢,则按相反方 向调整。在调节过程中,如消除误差的速度较慢,也 可适当减小*K_i*。

(3)如果反复调整 K_p 、 K_i ,仍存在较大超调,则 加入微分控制, K_d 从0开始逐渐增大。反复试验后, 取综合性能最好的参数组合^[22]。

上述 PID 控制器参数需经多次试验调整,且一 旦确定,在系统运行过程中无法改变。分析 2.1 节 建立的电液系统数学模型可知,由于电液系统存在 死区、压力-流量增益等非线性特性,对其进行数学 建模时,需要进行合理的假设,将非线性特性进行局 部线性化,但这种线性化处理会影响到系统的动态 特性^[23]。而 BP 神经网络可以实现任意非线性映 射^[24-26],利用神经网络可以建立参数自整定的 PID 控制器,从而优化控制系统的静态和动态性能。基 于 BP 神经网络的 PID 控制系统结构框图如图 6 所 示。控制器由经典增量式 PID 控制器和 BP 神经网 络组成。

图 6 巫」 Br 种生网络时时 印D 生前系统和构体图 Fig. 6 Block diagram of PID control system based on BP neural network

采用经典增量式数字 PID 控制,其计算公式 为^[27]

$$u(k) = u(k-1) + K_p(e(k) - e(k-1)) + K_i e(k) + K_d(e(k) - 2e(k-1) + e(k-2))$$
(17)

式中 u(k)-----k 时刻控制器输出的电流

e(k)——k 时刻的控制偏差

对于 2.1 节所述液压马达系统, *e*(*k*)为 *k* 时刻目 标摆角与实际摆角的差值; 对于液压缸系统, *e*(*k*)为 *k* 时刻路面实际倾角与机具横向倾角的差值。

本文控制算法使用的神经网络采用4-5-3 结构的 BP 网络。其中隐含层神经元的激励函数采用 正负对称的双曲正切函数, PID 控制器的 3 个参数 均为非负值,因此,输出层的激励函数采用非负的 Sigmoid 函数。

根据控制框图,神经网络输入层输出选定为

$$\begin{cases} O_j^{(1)}(k) = x_j = e(k-j) & (j=1,2,3) \\ O_4^{(1)}(k) \equiv 1 \end{cases}$$
(18)

神经网络隐含层输入为

$$net_{i}^{(2)}(k) = \sum_{j=0}^{4} \omega_{ij}^{(2)}(k) O_{j}^{(1)}(k)$$
 (19)

输出为

$$\begin{cases} O_i^{(2)}(k) = f(net_i^{(2)}(k)) & (i = 1, 2, 3) \\ O_4^{(2)}(k) \equiv 1 \end{cases}$$
(20)

神经网络输出层输入为

$$net_{i}^{(3)}(k) = \sum_{i=0}^{5} \omega_{li}^{(3)}(k) O_{i}^{(2)}(k) \qquad (21)$$

输出为

$$O_l^{(3)}(k) = g(net_l^{(3)}(k)) \quad (l = 1, 2, 3) \quad (22)$$

其中
$$f(x) = \tanh(x)$$
 (23)

$$g(x) = \frac{1}{2}(1 + \tanh(x))$$
 (24)

式中
$$\omega_{ij}^{(2)}$$
——隐含层权值系数
 $\omega_{li}^{(3)}$ ——输出层权值系数
 $O_1^{(3)}(k) = K_p, O_2^{(3)}(k) = K_i, O_3^{(3)}(k) = K_d$ 即为

PID 控制器的3个可调参数。

式(18)~(22)中,上标(1)、(2)、(3)分别对应 输入层、隐含层和输出层。

在神经网络前向传输过程中,取性能指标 J 来 判断当前 PID 参数,性能指标 J 计算公式为

$$J = \frac{1}{2} (r(k+1) - y(k+1))^2 = \frac{1}{2} e^2 (k+1) \quad (25)$$

正向传播计算完毕后,根据实际输出与期望 输出的误差按连接通路进行反向计算,对各层之 间的权值进行调整,以优化性能指标 J,即减小误 差信号。利用最速下降法推导得到输出层权值调 整公式为

 $\Delta \omega_{li}^{(3)}(k+1) = \eta \delta_{l}^{(3)} O_{i}^{(2)}(k) + \alpha \Delta \omega_{li}^{(3)}(k)$ (26) 其中

$$\delta_{l}^{(3)} = e(k+1)\operatorname{sgn}\left(\frac{\partial y(k+1)}{\partial u(k)}\right)\frac{\partial u(k)}{\partial O_{l}^{(3)}(k)}g'(\operatorname{net}_{i}^{(3)}(k))$$

$$(l=1,2,3)$$
(27)

式中 η——学习速率,取0.3

α----惯性系数,取0.05

隐含层权值调整公式为

 $\Delta \omega_{ij}^{(2)}(k+1) = \eta \delta_i^{(2)} O_j^{(1)}(k) + \alpha \Delta \omega_{ij}^{(2)}(k)$ (28) 其中

$$\delta_{i}^{(2)} = \left(\sum_{l=1}^{3} \delta_{l}^{(3)} \omega_{li}^{(3)}(k)\right) f'(net_{i}^{(2)}(k))$$

$$(i = 1, 2, 3, 4, 5)$$
(29)

根据以上推导可知,在控制过程中,若实际输出 与期望输出不一致,各层神经元之间的权值进行自 动实时调整,进而调整输出层输出,实现 PID 参数的 自整定。

3 仿真分析

使用 Matlab 中的可视化仿真工具 Simulink 建 立丘陵山地拖拉机姿态系统控制系统动力学模型, 利用 S-function 模块搭建神经网络 PID 控制器,结 合 2.2 节中建立的数学模型,通过试验法对控制器 的比例、积分、微分系数进行整定,即可对模型进行 仿真。系统主要模型参数如表 1 所示, Simulink 仿 真模型如图 7 所示。

一般来说,丘陵山地拖拉机的作业路面倾角范 围为(-15°,15°),车身姿态控制系统中摆动机构 的摆角范围为±80°,根据机构设计尺寸可知,路面 倾角为15°时,摆动机构摆角为(-75°,75°),处于 安全范围。因此,车身横向倾角初始值为15°,机具 横向倾角初始值为0°,给定幅值为15°路面倾角的 阶跃信号。

表1 系统模型参数

Tab. 1 Parameters of system model	
参数	数值
$D_m/(m^3 \cdot rad^{-1})$	1. 27 × 10 $^{-5}$
$J_m/(\mathrm{kg}\cdot\mathrm{m}^2)$	7. 79 $\times 10^{-4}$
V_t/m^3	1. 28 × 10 $^{-4}$
$K_{ce}/({\rm m}^5 \cdot {\rm N}^{-1} \cdot {\rm s}^{-1})$	8. 94 \times 10 ⁻¹²
A_{me}/m^2	1. 23 × 10 ^{-3}
$B_p/(\mathrm{N}\cdot\mathrm{s}\cdot\mathrm{m}^{-1})$	3 000
$C_{te} / (m^3 \cdot MPa^{-1} \cdot s^{-1})$	1. 49 $\times 10^{-11}$
$K_t / (m^5 \cdot N^{-1} \cdot s^{-1})$	7. 55 $\times 10^{-12}$
m/kg	20. 408
V_e/m^3	1. 86 $\times 10^{-4}$
$oldsymbol{eta}_{e}/\mathrm{MPa}$	700
L/m	1.300
l∕ m	0. 181

0.650

0.550

 S_1/m

 S_2/m

仿真结果如图 8 所示。图 8a 为 PID 控制算法 的车身调整仿真结果,上升时间为 12 s,超调量为 0.85°,图 8b 为神经网络 PID 控制算法的车身调整 仿真结果,调整时间为 10.22 s,基本无超调。图 8c 为 PID 控制算法的机具调整仿真结果,上升时间为 0.71 s,超调量为 0.55°,图 8d 为神经网络 PID 控制 算法的机具调整仿真结果,上升时间为 0.66 s,超调 量为 0.32°。仿真结果验证了神经网络 PID 控制算 法的可行性。同时,神经网络 PID 控制算法的准确 性、快速性均优于 PID 控制算法。

4 试验

4.1 试验设备与条件

对山东五征集团生产的四轮拖拉机进行改装, 安装车身姿态调整机构和机具姿态调整机构。使用 自主研发的控制系统控制器,CPU 使用意法半导体

生产的 STM32F407ZGT6 型芯片;使用 TLE82453 型芯片输出 PWM 电流,控制比例电磁阀,电流为0~1.5 A;使用4个浙江北微信息科技有限公司生产的 BW - VG525 型动态倾角传感器,分别安装在左右摆动机构、车身、机具姿态调整机构上,实时测量左右 摆角、车身横向倾角和机具横向倾角;使用 CAN 总线通信,用于接收传感器数据。

试验分为2个工况。工况1:在一段坡度相对 固定的路面,以约3 km/h的速度进行作业,分别启 动 PID 同步控制程序和神经网络 PID 同步控制程 序,验证方案的可行性,对比、分析同步控制效果;工 况2:在一段起伏较大,坡度变化明显的路面,以约 3 km/h的速度进行作业,对比 PID 和神经网络 PID 在较为恶劣工况下的同步控制效果。试验现场如 图9所示。

4.2 试验结果及分析

4.2.1 固定坡度路面试验

固定坡度路面的倾角变化如图 10 所示,作业路 面倾角在 14°上下波动,波动范围约 ±1°,结果表 明,可以模拟丘陵山地拖拉机常见的作业工况。

图 11a 为基于 PID 算法和神经网络算法的控制 方法下的车身姿态调整效果。由图可知,由于路面 起伏不大,车身横向倾角变化范围较小。经计算可 知,PID 算法控制下,车身横向倾角最大误差为 0.9750°,平均绝对值误差为0.1782°,均方根误差 为0.2311°;神经网络 PID 算法控制下,车身横向倾 角最大误差为0.8640°,平均绝对误差为0.1604°, 均方根误差为0.2256°。 20

15

5

0

角度/(°) 10

图 8 阶跃响应仿真结果

Fig. 8 Step response simulation results

试验现场 图 9 Fig. 9 Experimental site

图 11b 为两种算法控制下的摆动机构运动情 况。计算可知,PID 算法控制下,左右摆角绝对值差 最大误差为1.4450°,平均绝对误差为0.3921°,均方 根误差为0.4807°;神经网络PID算法控制下,左右

Fig. 10 Curve of inclination of fixed slope pavement

摆角绝对值差最大误差为 0.960 0°, 平均绝对误差 为0.3512°,均方根误差为0.4190°。在路面坡度 变化不大的情况下,所提控制方法能够保证车身 横向倾角基本为0°左右,误差范围较小,能够满足 丘陵山地拖拉机的常见工况。同时对比可知,神

Fig. 11 Fixed slope road test results 经网络 PID 控制算法的性能优于常规的 PID 控制 算法。

图 11c 为两种控制方法下的机具倾角调整情况。由图可以看出,机具倾角随路面实际倾角的变化不断调整,跟踪效果较好。为更直观地比较不同控制方法的性能,分别绘制 PID 算法和神经网络 PID 算法控制下的机具倾角调整误差曲线,如图 11d 所示。计算可知,PID 算法控制下,机具横向倾角最大误差为 0. 200 5°,均方根误差为 0. 244 2°;神经网络 PID 算法控制下,机具横向倾角最大误差为 0. 649 7°,平均绝对误差为 0. 168 6°,均方根误差为 0. 649 7°,平均绝对误差为 0. 168 6°,均方根误差为 0. 201 9°。在角度固定,起伏不大的作业路面,2种控制算法控制误差差别不大,神经网络 PID 算法相对更优,验证了该方法的可行性。

4.2.2 随机坡度路面试验

使用 PID 算法和神经网络 PID 算法启动同步控制程序,以1 挡作业速度(约3 km/h)行驶在起伏较大的随机路面上,路面倾角变化曲线如图 12 所示,路面最大倾角约 13.5°,倾角极差约为 18°,可以较好地模拟出恶劣作业工况。

Fig. 12 Curve of inclination of random slope pavement

图 13a 为基于 PID 算法和神经网络算法的控制 方法下的车身姿态调整情况。对比图 10 可以看出, 在路面倾角变化不大的路面,车身横向倾角基本为 0°,在剧烈起伏的路面,车身横向倾角在 0°附近小 幅度波动。经分析可知,PID 算法控制下,车身横向倾 角最大误差为4.1799°,平均绝对误差为0.8111°,均方 根误差为1.2049°;神经网络 PID 算法控制下,车身 横向倾角最大误差为 2.874 0°,平均绝对误差为 0.5777°,均方根误差为 0.862 1°。可见,基于神经 网络 PID 算法控制的车身横向倾角基本保持水平, 满足安全作业的需要,且误差和误差波动程度优于 常规的 PID 控制算法。

图 13b 为 2 种算法控制下的摆动机构运动情况。经计算可知,PID 算法控制下,左右摆角绝对值差最大误差为5.7700°,平均绝对误差为1.241 2°,均方根误差为1.546 1°;神经网络 PID 算法控制下,左右摆角绝对值差最大误差为4.2800°,平均绝对误差为0.988 5°,均方根误差为1.1909°。

图 13c 为基于 PID 算法和神经网络算法的控制 方法下的机具倾角调整效果,可以看出,在 150 ~ 300 s 之间起伏较大的路面行驶时,机具基本可以与 路面保持平行。图 13d 为不同控制算法下机具倾角 调整误差曲线,经计算可知,PID 算法控制下,机具 横向倾角最大误差为 2.740 2°,平均绝对误差为 0.935 3°,均方根误差为 1.360 2°;神经网络 PID 算 法控制下,机具横向倾角最大误差为 1.762 0°,平均 绝对误差为 0.624 6°,均方根误差为 0.907 4°。由 此可知,相比常规 PID 控制算法,神经网络 PID 算法 有效提高了机具倾角对路面实际倾角的跟踪精度, 降低了误差波动程度,在作业过程中机具基本与路

Fig. 13 Random slope road test results

面保持平行,保证了耕深均匀。

由试验数据可知,在起伏较大的随机路面上 (路面最大倾角小于15°),基于神经网络 PID 算法 的同步控制系统效果更好。其中,车身姿态控制方 面,车身横向倾角控制精度在±2.8740°以内,机具 姿态控制方面,机具横向倾角与路面倾角差值的控 制精度在±1.7620°以内,在调整车身水平,满足车 辆作业安全的前提下,保证了机具横向倾角与路面 的平行,从而提高了作业质量和效率。

5 结论

(1)设计了丘陵山地拖拉机姿态同步控制系统,该系统由车身姿态控制系统和机具姿态控制系统

统两部分组成。仿真分析结果表明,基于神经网络 PID 控制算法的同步控制系统的控制性能优于 PID 控制算法,能够满足整车姿态调整要求。

(2)固定坡度路面田间试验表明,在本文方法 控制下,车身横向倾角最大误差为0.8640°,机具横 向倾角最大误差为0.6497°,能够满足拖拉机主要 作业工况要求。

(3)随机坡度路面恶劣工况下的田间试验进 一步验证了本文方法的有效性。结果表明,车身 横向倾角最大误差为2.8740°,机具横向倾角最大 误差为1.7620°。在固定坡度路面与随机路面上, 基于神经网络 PID 算法的控制性能均优于 PID 算法。

- 参考文献
- [1] 罗锡文,廖娟,胡炼,等.提高农业机械化水平促进农业可持续发展[J].农业工程学报,2016,32(1):1-11.
 LUO Xiwen, LIAO Juan, HU Lian, et al. Improving agricultural mechanization level to promote agricultural sustainable development[J]. Transactions of the CSAE,2016,32(1):1-11. (in Chinese)
- [2] 邵明玺,辛喆,江秋博,等. 拖拉机后悬挂横向位姿调整的模糊 PID 控制[J]. 农业工程学报, 2019, 35(21):34-42.
 SHAO Mingxi, XIN Zhe, JIANG Qiubo, et al. Fuzzy PID control for lateral pose adjustment of tractor rear suspension[J].
 Transactions of the CSAE, 2019, 35(21):34-42. (in Chinese)
- [3] 夏长高,杨宏图,韩江义,等. 山地拖拉机调平系统的研究现状及发展趋势[J]. 中国农业大学学报,2018, 23(10):136-142.
 XIA Changgao, YANG Hongtu, HAN Jiangyi, et al. Research status and development trend of hilly mountain tractor leveling system[J]. Journal of China Agricultural University, 2018,23(10):136-142. (in Chinese)
- [4] 吕杰.农用拖拉机后悬挂液压系统的控制研究[D].秦皇岛:燕山大学, 2016.
 LÜ Jie. Analysis of agricultural tractors rear hitch hydraulic control system[D]. Qinhuangdao: Yanshan University, 2016. (in Chinese)
- [5] 周浩,胡炼,罗锡文,等.旋耕机自动调平系统设计与试验[J/OL].农业机械学报,2016,47(增刊):117-123. ZHOU Hao, HU Lian, LUO Xiwen, et al. Design and experiment on auto leveling system of rotary tiller[J/OL]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(Supp.):117-123. http://www.jcsam.org/jcsam/ch/reader/view_ abstract.aspx? flag = 1&file_no = 2016s018&journal_id = jcsam. DOI:10.6041/j.issn.1000-1298.2016.S0.018. (in Chinese)
- [6] 胡炼,罗锡文,赵祚喜,等. 超声波传感器评定水田激光平地机水平控制系统性能[J]. 农业机械学报,2009,40(增刊):
 73-76,81.

HU Lian, LUO Xiwen, ZHAO Zuoxi, et al. Evaluation of leveling performance for laser controlled leveling machine in paddy field based on ultrasonic sensors [J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40 (Supp.):73 - 76,81. (in Chinese)

- [7] 胡炼,林潮兴,罗锡文,等. 农机具自动调平控制系统设计与试验[J/OL]. 农业工程学报, 2015, 31(8): 15-20.
 HU Lian, LIN Chaoxing, LUO Xiwen, et al. Design and experiment on auto leveling control system of agricultural implements
 [J]. Transactions of the CSAE, 2015, 31(8): 15-20. (in Chinese)
- [8] 陈君梅,赵祚喜,陈嘉琪,等.水田激光平地机非线性水平控制系统[J/OL].农业机械学报,2014,45(7):79-84. CHEN Junmei, ZHAO Zuoxi, CHEN Jiaqi, et al. Design of nonlinear leveling control system for paddy land leveler[J/OL]. Transactions of the Chinese Society for Agricultural Machinery,2014,45(7):79-84. http://www.j-csam.org/jcsam/ch/ reader/view_abstract.aspx? flag = 1&file_no = 20140713&journal_id = jcsam. DOI:10.6041/j.issn.1000-1298.2014.07.013. (in Chinese)
- [9] COLOMBO T, PANZANI G, SANTOS D J L, et al. Load levelling control for an hydro-pneumatic suspension of a tractor cabin: modelling, identification and control[C]//Control Technology & Applications. IEEE, 2017.
- [10] PIJUAN J, COMELLAS M, NOGUÉS M, et al. Active bogies and chassis levelling for a vehicle operating in rough terrain [J]. Journal of Terramechanics, 2012, 49(3-4):161-171.
- [11] 刘恒培,杨福增,刘世,等. 差高机构对微型履带山地拖拉机稳定性的影响[J]. 拖拉机与农用运输车,2013,40(1): 18-21.

LIU Hengpei, YANG Fuzeng, LIU Shi, et al. Effect of mechanism of height difference on stability of miniature crawler hillside tractor[J]. Tractor & Farm Transporter, 2013, 40(1):18-21. (in Chinese)

[12] 何金伊,杨福增,徐秀栋.山地履带式遥控微耕机控制系统设计[J].拖拉机与农用运输车,2011,38(2):19-22.

HE Jinyi, YANG Fuzeng, XU Xiudong. Design of remote control system for hillside crawler micro-farming tractor[J]. Tractor & Farm Transporter, 2011,38(2):19-22. (in Chinese)

- [13] 王涛.山地拖拉机车身自动调平控制系统的设计与试验[D].杨凌:西北农林科技大学,2014.
 WANG Tao. Design and test of the hillside tractor body automatic leveling control system [D]. Yangling: Northwest A&F University,2014. (in Chinese)
- [14] 王涛,杨福增,王元杰.山地拖拉机车身自动调平控制系统的设计[J].农机化研究,2014,36(7):232-235.
 WANG Tao, YANG Fuzeng, WANG Yuanjie. Design of automatic leveling control system for mountain tractor body[J].
 Journal of Agricultural Mechanization Research,2014, 36(7):232-235. (in Chinese)
- [15] 张季琴,杨福增,刘美丽,等.山地微耕机液压差高装置的设计[J].拖拉机与农用运输车,2011,38(3):92-93.
 ZHANG Jiqin, YANG Zuzeng, LIU Meili, et al. Design of an hydraulic difference in elevation equipment used in mountainous micro-tiller[J]. Tractor & Farm Transporter, 2011, 38(3):92-93. (in Chinese)
- [16] 胡春辉, 弋景刚, 姜海勇, 等. 基于三点调平的农田激光清平机设计与研究[J]. 农机化研究, 2011,33(3):100-103.
 HU Chunhui, GE Jinggang, JIANG Haiyong, et al. Design and research of laser leveling machine based on three-point leveling
 [J]. Journal of Agricultural Mechanization Research, 2011, 33(3):100-103. (in Chinese)
- [17] 刘林. 基于拖拉机三点悬挂耕作机具调平系统研究[D]. 长沙:湖南农业大学, 2014.
 LIU Lin. Study on the leveling system of tillage implement based on tractor three point suspension system[D]. Changsha: Hunan Agricultural University, 2014. (in Chinese)
- [18] 马晓宏,陈冰冰,甘学辉,等. 电液比例阀控缸位置控制系统的建模与仿真研究[J]. 机械设计与制造, 2008(4):43-45.
 MA Xiaohong, CHEN Bingbing, GAN Xuehui, et al. The modeling and simulation of electro-hydraulic proportional valvecontrolled cylinder position servo system[J]. Machinery Design & Manufacture, 2008(4):43-45. (in Chinese)
- [19] 强宝民,刘保杰. 电液比例阀控液压缸系统建模与仿真[J]. 起重运输机械, 2011(11): 35-39.
 QIANG Baomin, LIU Baojie. Electro-hydraulic proportional valve hydraulic cylinder system modeling and simulation[J].
 Hoisting and Conveying Machinery, 2011(11): 35-39. (in Chinese)
- [20] 蒋俊,张建,冯贻江,等. 丘陵山地拖拉机电液悬挂系统的设计与仿真分析[J]. 浙江师范大学学报(自然科学版), 2019, 42(1):37-41.

JIANG Jun, ZHANG Jian, FENG Yijiang, et al. The design and simulation analysis of the electro-hydraulichitch system in the tractor[J]. Journal of Zhejiang Normal University(Natural Science Edition), 2019, 42(1):37-41. (in Chinese)

[21] 刘金琨. 智能控制[M]. 3 版. 北京:电子工业出版社, 2014.

[22] 廖常初. PID 参数的意义与整定方法[J]. 自动化应用, 2010(5):31-33,36.
 LIAO Changchu. The meaning of PID controller parameters and setting method[J]. Automation Application, 2010(5):31-33,36. (in Chinese)

- [23] 刘晓琳,兰婉昆.基于神经网络的电液负载模拟器控制器设计[J].科技创新与应用,2020(12):32-36. LIU Xiaolin, LAN Wankun. Design of electro-hydraulic load simulator-controller based on neural network[J]. Technology Innovation and Application, 2020(12):32-36. (in Chinese)
- [24] LIU Di, HU Chunwan, GAO Yanli. Simulation of asynchronous motor control system based on BP neural network PID control algorithm[C]. International Conference on Computer, 2011.
- [25] 张学燕,高培金,刘勇. BP 神经网络 PID 控制器在工业控制系统中的研究与仿真[J].自动化技术与应用,2010(5): 9-12.

ZHANG Xueyan, GAO Peijin, LIU Yong. The researching and simulition of BP neural network PID controller in industry's control system[J]. Techniques of Automation and Applications, 2010(5):9-12. (in Chinese)

- [26] 张晓凤. 基于神经网络 PID 控制方法的研究[D]. 沈阳:东北大学, 2013. ZHANG Xiaofeng. Research on control method of neural network based on PID[D]. Shenyang: Northeastern University, 2013. (in Chinese)
- [27] 涂川川,朱凤武,李铁. BP 神经网络 PID 控制器在温室温度控制中的研究[J]. 中国农机化,2012,23(2):151-154,144.

TU Chuanchuan, ZHU Fengwu, LI Tie. Study and simulation of BP neural network PID controller—take the control system of greenhouse temperature as example [J]. Journal of Chinese Agricultural Mechanization, 2012,23(2):151 - 154,144. (in Chinese)