doi:10.6041/j.issn.1000-1298.2020.10.042

外保温塑料大棚表冷器-风机集放热系统性能分析

李 明^{1,2} 耿 若¹ 宋卫堂^{1,2} 王平智^{1,2} 李 涵¹ 王秀芝³ (1.中国农业大学水利与土木工程学院,北京100083; 2.农业农村部设施农业工程重点实验室,北京100083; 3.赤峰市农牧科学研究院,赤峰 024000)

摘要:为调节外保温塑料大棚的室内气温,设计了一套通过表冷器-风机与室内空气进行热交换的表冷器-风机集放热系统(TSFU系统)。根据测试,TSFU系统在晴天和多云天的放热量 Q_i 分别为(433.0±48.6) MJ和(199.3±0.1) MJ,系统性能系数(COP)分别达到 2.9和3.1,可将室内气温分别提高(2.5±0.4)℃和(1.1±0.3)℃,且加温成本较燃气热风炉节约了 40.2%。根据模拟分析,将系统表冷器-风机的全热交换效率和表冷器-风机数量分别提高至 0.44和20时,可分别使晴天 Q_i 增加(67.4±14.9)%和(76.1±14.7)%,多云天 Q_i 增加(14.9±7.6)%和(17.0±4.5)%,COP达到 3.6±0.6以上。若将蓄水池中的水体积提高到 52m³,可使多云天 Q_i 和 COP分别提高(31.7±20.3)%和1.0±0.7,但晴天 Q_i 和 COP未得到改善;将水体积减小至 13m³时,晴天 Q_i 未受影响,但使多云天 Q_i 和 COP 显著减小。因此,可使用 TSFU系统调节外保温塑料大棚的室内温度。

关键词:塑料大棚;表冷器-风机;外保温;空气余热;集放热性能 中图分类号:S625.1 文献标识码:A 文章编号:1000-1298(2020)10-0371-08

Performances of Thermal Collecting and Releasing System Developed with Fan-coil Units in Plastic Tunnel Covered with Thermal Blanket

LI Ming^{1,2} GENG Ruo¹ SONG Weitang^{1,2} WANG Pingzhi^{1,2} LI Han¹ WANG Xiuzhi³

(1. College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China

2. Key Laboratory of Agricultural Engineering in Structure and Environment,

Ministry of Agriculture and Rural Affairs, Beijing 100083, China

3. Chifeng Academic of Agriculture and Animal Husbandry Science, Chifeng 024000, China)

Abstract: A plastic tunnel covered with thermal blanket (hereafter referred to as "PTET") is type of plastic tunnel with large span. This facility has the advantages of low construction cost, high land utilization efficiency and large space, compared with Chinese solar greenhouse, which was widely applied in Northern China for vegetable production over winter. Hence, PTET has been employed as a substitute for Chinese solar greenhouse in recent years. However, there are no passive heat storage walls in PTET. It is necessary to supply auxiliary heating in PTET to maintain high indoor air temperature (T_{in}) and meeting the requirements of the indoor vegetables. To solve the problem, a thermal collecting and releasing system developed with fan-coil units (TSFU) was employed to avoid high cost and air pollution caused by the application of conventional heating methods. The objective was to analyze the thermal performances of TSFU in PTET. In this experiment, TSFU was composed of 15 fan-coil units hanging beneath the ridge, a water tank, a water pump and several pipes. By circulating water within the system, TSFU collected the surplus air thermal energy in daytime and released them in nighttime to heat the PTET. According to the test, the thermal energy released at nighttime (Q_r) in solar days and cloudy days were (433.0 ± 48.6) MJ and (199.3 ± 0.1) MJ, respectively. Q_r in the cloudy day was just 46.0% of that in the solar days, due to low T_{in} in the daytime. As a result, T_{in} in the nighttime of solar days and cloudy days were elevated by (2.5 ± 0.4) °C and (1.1 ± 0.3) °C, respectively. The coefficient of

作者简介:李明(1983—),男,讲师,博士,主要从事设施园艺工程研究,E-mail: lim_abe@ cau. edu. cn

收稿日期: 2020-06-26 修回日期: 2020-08-09

基金项目:农业农村部农业设施结构工程重点实验室开放课题项目(201702)、浙江省科技计划项目(2019C02009)和现代农业产业技术 体系建设专项资金项目(CARS23C02)

通信作者: 王平智(1964—),男,工程师,主要从事设施农业工程研究,E-mail: wpz@ cau. edu. cn

performance (COP) of TSFU in solar days and cloudy days were 2.9 and 3.1, respectively. Compared with the air heater using natural gas as the fuel, the heating cost of PTET can be decreased by 40.2% by employing the TSFU. Besides, a dynamical model for simulating the temperature of water in the water tank was developed and used to analyze the factors affecting the thermal performances of TSFU. With the simulation results, it was found that, by increasing the overall heat exchange efficiency (η) and numbers (n) of fan-coil units to 0.44 and 25, respectively, Q_r in the solar days can be increased by (67.4 ± 14.9)% and (76.1 ± 14.7)%, respectively, due to enhanced heat exchange rate of TSFU. Under the above conditions, Q_r in the cloudy days was increased by (14.9 ± 7.6)% and (17.0 ± 4.5)%, respectively, as well. COP was raised over 3.6 ± 0.6. On the other hands, by increasing the water volume in the tank (V) to 52 m³, Q_r in the cloudy days was increased by (31.7 ± 20.3)%, while COP was increased by 1.0 ± 0.7. However, Q_r and COP in the solar days but decreased in the cloudy days. In conclusion, it was feasible to employ TSFU to improve T_{in} of PTET during winter.

Key words: plastic tunnel; fan-coil units; external thermal blanket; surplus air thermal energy; performances of thermal collecting and releasing system

0 引言

我国北方冬季气候寒冷,设施蔬菜生产易受低 温冷害的影响^[1]。在冬季夜间进行适当加温是确 保设施蔬菜正常生长的重要手段。目前,传统的加 温手段,如热风加热、热水加热等,依靠煤炭、石油等 化石能源提供热量,均存在加温成本高、环境污染严 重等问题,不适于园艺设施的夜间加温^[2-4]。因此, 利用太阳能、地热能、生物质能、空气热能等可再生 能源进行夜间加温的节能技术获得了快速发展。

空气热能是指高温空气所蕴含的能量。受温室 效应的影响,温室在晴天日间的室内空气温度较高, 蕴含丰富的空气热能,可用于夜间加温^[5-6]。根据 储热介质的不同,现有空气热能利用技术可归纳为 地中热交换系统、卵石床热交换系统和基于水蓄热 的空气余热集放热系统。地中热交换系统由风机和 埋设在地下的换热管构成,可在日间将室内热空气 引入地下土壤,并将部分空气余热储存在土壤中,用 于夜间放热、提高室内气温[7]。一些学者研究了地 中热交换系统,进行了参数设计、效果应用、模型仿 真等方面的研究^[8-13]。卵石床热交换系统结构和 运行模式与地中热交换系统相似。文献[14]针对 一栋15m²的塑料大棚设计了四周隔热的卵石床换 热系统,该系统可将室内气温保持在10℃以上。文 献[15]利用埋置于地下的卵石床储蓄空气热能,在 夜间通过对流换热提取热量,并在冠层水平放热,通 过测试发现,该系统可将日间气温降低1.9℃,将夜 间温度提高 3.0℃。文献[16]使用卵石床换热系统 和蓄热水袋可将温室晴天、阴天夜间温度分别提高 3~5℃和2~3℃。基于水蓄热的空气余热集放热 系统是近年发展起来的一种主动式集放热技术。该 系统利用热泵系统或表冷器--风机收集空气余热,将 其转移到水中储存,用于夜间放热,具有较高的热交换效率。国内外学者基于此原理,设计了不同类型的空气余热利用系统,并进行了热力学模型、性能及应用效果等方面的研究^[17-20]。

外保温大棚是在大跨度塑料大棚的基础上覆盖 保温被,其优点是内部空间大、土地利用率高、成本 低、适于机械作业。近年来,种植户多选择外保温塑 料大棚来替代日光温室^[21]。但外保温大棚室内气 温较低,容易出现夜间室内气温过低现象,对作物造 成低温胁迫^[22-24]。根据前期测试结果,东西向外保 温大棚日间具有较高的室内气温,蕴含有丰富的空 气热能,可用于调节夜间室内气温。但大量热能在 日间通过通风流失到室外,未得到有效利用。

针对上述问题,本文设计一种包含表冷器-风 机、蓄水池、水泵等部件的空气余热集放热系统(以 下称为表冷器-风机集放热系统,Thermal collecting and releasing system developed with fan-coil units,简 称 TSFU 系统)。该系统通过表冷器-风机收集大棚 日间热空气的能量,并储存在蓄水池内,用于改善夜 间室内气温。本文旨在研究该系统应用于外保温大 棚的集放热性能,构建 TSFU 系统蓄水池温度模型, 并分析表冷器、蓄水池体积等因素对 TSFU 系统集 放热性能的影响,为进一步优化 TSFU 系统集放热 性能提供参考。

1 材料与方法

1.1 外保温试验大棚

试验用外保温大棚位于内蒙古自治区宁城县大城子镇(118.9°E,41.7°N),东西走向,东西长140m、脊高4.5m。试验大棚山墙采用黏土砖建造,南侧和北侧屋面均为曲面,在水平地面的投影宽度分别为8m和6m。屋面覆盖塑料薄膜和保温被

(草苫+太空棉)。大棚屋脊下方设有两排间距为 2m的立柱,每排立柱的间距为2.6m。利用塑料薄 膜将试验大棚从中间隔开,西侧作为试验区,东侧作 为对照区,试验区和对照区的栽培管理模式完全一 致。试验期间,大棚南面种植番茄,北面未种植作 物,采用滴灌灌溉。北侧屋面保温被始终保持闭合 状态,以减少大棚屋面散热。南侧屋面保温被揭开 和闭合时段分别为08:30—09:30和16:00—16:30。 当室内气温较高时,打开南侧屋面顶部的通风口进 行自然通风。

1.2 TSFU 系统结构与运行模式

TSFU系统由表冷器-风机、蓄热水池、潜水泵 和循环管路组成。该系统包含15台表冷器-风 机,按4.0m的间隔吊挂在屋脊下方。每台表冷 器-风机换热面积为42m²,包含两台扇叶直径 0.4m、输入功率120W的风机。蓄热水池位于大 棚西北侧,有效容积为31m³,蓄水池内水的体积 为26m³。WQ15-20-2.2型潜水泵功率为 2.2kW,扬程为20m,安装在蓄热水池内。上述各 构件通过直径为50mm的PVC管、以同程进水和出 水的方式连接在一起。

在日间,当室内气温(T_{in})达到 20~22°,且比 水温(T_{u})高 4° 时,TSFU 系统启动,潜水泵和风机 同时运行,驱动蓄水池中的水流经表冷器-风机,并 吸收大棚内空气中热量,然后再返回蓄水池中,将收 集的空气热能储存在蓄水池中;当 T_{in} 低于 20°,或 $T_{in} = T_{u}$ 小于 4° 时,系统关闭,停止集热。在夜间, 当 T_{in} 低于 10°,且 $T_{u} = T_{in}$ 低于 4° 时,TSFU 系统启 动,潜水泵和风机同时运行,通过循环蓄水池中的 水,利用表冷器-风机将蓄水池中的热量释放到棚 内,加热大棚。若 T_{in} 高于 13° 或 $T_{u} = T_{in}$ 小于 2°C 时,系统关闭,停止放热。

1.3 测试方案

大棚内 T_{in} 和 T_w 传感器的布置方式如图 1 所示。 室外气温和太阳辐照度传感器布置在外保温大棚操 作间屋顶。其中, T_{in} 和 T_w 使用 Pt100 型铂电阻测量 (测量范围: -50~200°、测量精度为±0.1°C)。室 外气温采用 SHT20 型芯片温湿度传感器测量(测量 范围: -40~125°C,精度为±0.3°C),室内外太阳辐 照度采用 YGC - TBQ 型太阳总辐射传感器测量(武 汉辰云科技有限公司,测量范围0~2000 W/m²,测量 精度为±3 W/m²)。

试验中所有仪器记录的间隔时间为 10 min。选择 2020 年 1 月 16 日 08:30—18 日 08:30 为典型晴天,选择 2020 年 1 月 18 日 08:30—20 日 08:30 为 典型多云天。

Fig. 1 Sketch maps and measurement points in plastic tunnel covered with thermal blanket

1.4 TSFU 系统性能评估

TSFU 系统的热交换速率计算公式为

$$q_{i+1} = \rho_w c_w V(T_{w,i+1} - T_{w,i})/1000$$
 (1)
式中 q_{i+1} 第(*i*+1) Δt (Δt 是计算步长,取
600 s)时刻 TSFU 系统的热交换速
率,kW

 ρ_w ——水的密度,取 1.0×10³ kg/m³

c_w——水的比热容,取4.2 kJ/(kg·K)

V-----蓄热水池中水的体积,取26 m3

 $T_{w,i}$ ——第 $i\Delta t$ 时刻的水温, ℃

为避免受系统运行过程中系统回水在蓄水池内 分布不均匀对热交换速率计算造成的影响,使用模 拟的水温进行热交换速率计算,TSFU系统集热量和 放热量计算公式为

$$Q_{c} = \rho_{w} c_{w} V (T_{w,ce} - T_{w,cs}) / 10^{\circ}$$
⁽²⁾

$$P_r = \rho_w c_w V(T_{w,re} - T_{w,rs}) / 10^6$$
(3)

式中 Q_c ——系统集热量, MJ

- Q_r ——系统放热量,MJ
- $T_{w,s}$ ——TSFU系统集热阶段开始时刻蓄热 水池的 $T_w,$ ℃
- $T_{w,ee}$ ——TSFU系统集热阶段结束时刻蓄热 水池的 $T_w,$ ℃
- $T_{w,rs}$ ——TSFU系统放热阶段开始时刻蓄热 水池的 $T_w,$ ℃
- $T_{w,re}$ ——TSFU系统放热阶段结束时刻蓄热 水池的 $T_w,$ ℃

TSFU系统性能系数(COP)计算公式为

$$C_{oP} = \frac{1\ 000Q_r}{3\ 600(E_r + E_c)} \tag{4}$$

其中
$$E_p = P_p(t_c + t_r)$$
 (5)

$$E_{f} = nP_{f}(t_{c} + t_{r})$$

$$C \qquad \text{TSELL \mathcal{E} $\mathcal{E$$

- E_f ——表冷器–风机的耗电量,kW·h
- P。——循环水泵功率,kW
- P_f-----表冷器--风机的功率,kW
- t_c ——TSFU系统日间集热过程运行时间,h
- t_r-----TSFU系统夜间放热过程运行时间,h
- n——TSFU系统表冷器--风机的数量

1.5 TSFU 系统蓄水池水温模拟

为简化 T_w模拟,提出以下假设:表冷器-风机的 进风温度与 T_{in}相同;表冷器-风机的进水温度与 T_w 相同。

表冷器-风机的全热交换效率 η 是表冷器-风 机的重要技术参数,该值在水流速度和风速一定的 条件下为定值^[25],计算公式为

$$\eta = \frac{T_{in} - T_{ine}}{T_{in} - T_w} \tag{7}$$

式中 Time——表冷器-风机的出口空气温度,℃

表冷器-风机处空气和水之间的热交换满足公 式

$$nGc_p(T_{in} - T_{ine}) = -\rho_w c_w v(T_w - T_{we}) \qquad (8)$$

式中 G——表冷器-风机的空气流速,取1.11 m³/s c_a——空气的定压比热容,取1240 J/(m³·K)

v——系统中的水循环速率,m3/h

T_{we}——表冷器-风机的出口水温,℃

根据蓄水池能量和质量平衡, TSFU 系统 T_w计 算公式为

$$T_{w,i+1} = T_{w,i} - \frac{v\Delta t}{V} (T_{w,i} - T_{we,i})$$
(9)

式中 *T_{we,i}*——第*i*∆*t* 时刻的 *T_{we}*,℃

将式(7)和式(8)代入式(9),消去 T_{we}和 v,可 得到

当系统不运行时,T_w保持不变。

2 结果与分析

2.1 室外太阳辐射与室内外气温分析

测试期间室外太阳辐照度 *R* 与空气温度 *T_{out}*如 图 2 所示。根据外保温大棚保温被管理模式,将日 间和夜间分别定义为保温被揭开和闭合期间。晴天 日间 *R* 最大值为(402.0 ± 3.0) W/m²,出现在 12:00—13:00 期间。该期间累积太阳辐射能达到 了(7.3±0.1) MJ/(m²·d)。在多云天日间,*R* 最大 值分别达到了 375 W/m²和 508 W/m²,但该期间累 积太阳辐射能仅(5.5±0.07) MJ/(m²·d),是晴天

试验期间 T_{out} 呈二次函数开口向下的形式变 化。日间 T_{out} 在 - 14.4 ~ 0.2℃范围内先升高后降 低。保温被闭合之后, T_{out} 持续下降。晴天夜间 T_{out} 平均值为(-11.8±0.2)℃,最低值为 - 16.7℃,出 现在1月18日07:30。多云天夜间 T_{out} 平均值和最 低值分别为(-6.5±0.9)℃和 - 11.3℃,分别较晴 天夜间高(5.2±1.1)℃和5.4℃。

室内气温 T_{in} 变化趋势如图 3 所示。在晴天日间保温被揭开后,试验区和对照区 T_{in} 随时间快速提升,在午间受通风的影响出现波动,该期间试验区和对照区 T_{in} 最高可达 28.9°C和 33.3°C。午后 T_{in} 开始下降。由于午间试验区风口较大,加之 TSFU 系统运行集热的影响,导致午间试验区 T_{in} 低于对照区。 T_{in} 在多云天日间的变化规律与晴天相同。由于午间没有通风,且 TSFU 系统运行时间较短甚至不运行,对照区和试验区 T_{in} 没有显著区别,但受太阳辐照度变化而出现较大波动。

Fig. 3 Indoor air temperature of test and control areas of plastic tunnel covered with thermal blanket (Jan. 16—20, 2020)

夜间保温被闭合后,对照区和试验区 T_{in} 随时间 不断下降。在晴天夜间,对照区 T_{in} 保持在(12.6± 2.4)℃,最低值为(9.9±0.1)℃,较室外气温高 (24.3±0.7)℃。另一方面,由于对照区密封程度 优于试验区,导致对照区 T_{in} 在 TSFU 系统未运行期 间较试验区高(0.7 ± 0.1)℃。在后半夜,由于 TSFU系统启动放热,试验区 T_{in} 升高并超过对照区 (2.5 ± 0.4)℃。

在多云天夜间, 对照区 T_{in} 平均值为(11.6±1.7)℃, 最低值为(9.6±0.1)℃, 较室外气温高(18.0±1.6)℃。受大棚密封性能的影响, 对照区 T_{in} 在 TSFU 系统未运行期间较试验区高(1.2±0.2)℃。随后受 TSFU 系统启动放热的影响, 试验 区 T_{in} 升高并比对照区高(1.1±0.3)℃。

2.2 蓄水池水温与系统集放热性能分析

试验期间蓄水池水温 T_w 变化如图 4 所示,在晴 天日间,受 TSFU 系统运行集热的影响, T_w 迅速升 高。当系统停止后, T_w 保持平稳。在夜间,当 T_{in} 低 于 10℃时, TSFU 系统运行放热,并导致 T_w 快速下 降。根据测试, TSFU 系统在晴天日间和夜间分别运 行(3.0±0.6)h和5.7h。 T_w 在日间升高了(4.8± 1.1)℃,而在夜间降低了(4.1±0.2)℃。在多云天 日间,由于 T_{in} 较低, TSFU 系统仅在 19 日日间运行 了 1.2h, T_w 上升了 1.1℃。尽管如此, TSFU 系统依 然在 19 日和 20 日夜间运行了 3.3h和2.8h,向室 内放热。该期间 T_w 分别下降了 2.0℃和1.7℃。

Fig. 4 Measured $(T_{w,m})$ and simulated water temperature $(T_{w,s})$ and heat exchange rate (q) of TSFU system

为避免 T_w 测试值波动对 q 计算引起的误差,利 用 T_w 的模拟值 $T_{w,s}$ 来计算系统 q 的变化。根据测试 与计算结果, T_w 实测值 $T_{w,m}$ 与 $T_{w,s}$ 之间的偏差为 (0.2 ± 0.2) ℃,最大偏差为 0.9 ℃。二者之间的线 性方程为 $T_{w,m} = 0.99 T_{w,s} (R^2 = 0.99), T_{w,m} = T_{w,s}$ 具 有较好的一致性。根据上述关系,日间 q 以二次函 数 开 口 向 下 的 形 式 变 化,最 高 可 达 59.8 kW (图 4)。夜间 |q|在 TSFU 系统运行的初始时刻最 大,而后随时间快速减小,导致试验区 $T_{w,s}$ 在 TSFU 系统运行期间不断下降。晴天和多云天夜间的|q|分别为(21.9 ±7.4) kW 和(17.3 ±5.6) kW,在放 热结束时的最低值分别为 14.2 kW 和 = 11.7 kW。 晴天 TSFU 系统集热量(Q_c)和放热量(Q_c)分 别为(454.6±55.9) MJ 和(433.0±48.6) MJ,COP 达到了 2.9(表1)。Q,是Q。的(95.3±1.0)%。而 在多云天,TSFU 系统的Q,为(199.3±0.1) MJ,为 晴天的46.0%。该期间,TSFU系统在19日的Q。为 142.0 MJ,仅为晴天的31.1%。另外,虽然多云天的 Q,较低,但该期间 TSFU 系统的电耗主要用于夜间 供热,所以该期间 COP 达到 3.1,表明 TSFU 系统具 有显著的节能效果。

表1 TSFU系统集放热阶段性能参数

 Tab.1
 Heat collection and release performances of

TSFU system								
日期	Q_c/MJ	Q_r/MJ	$E_c/(kW \cdot h)$	$E_r/(kW \cdot h)$	COP			
16 日	483.2	453.2	12.9	29.6	3.0			
17 日	412.3	417.7	10.8	28.7	2.9			
18 日		199.3		16.8	3.3			
19 日	142.0	199.3	3.4	15.9	2.9			

注: $E_c \cap E_r$ 是 TSFU 系统集热和放热期间耗电量。

2.3 η 和 *n* 对 TSFU 系统集放热性能影响

为评估表冷器-风机全热交换效率 η 和表冷器-风机数量 n 对 TSFU 系统集放热性能的影响,利用上述数学模型对不同条件的 T_{u} 进行了模拟,并据此计算 TSFU 系统 Q_{c} 、 Q_{r} 和 COP(表 2)。

表 2 表冷器-风机全热交换效率 η、表冷器-风机数量 n 以及蓄水池体积 V 对 TSFU 系统集放热性能的影响

Tab. 2 Effects of overall heat exchange efficiency (η) and number (n) of fan-coil units and water volume in tank (V)on its heat collection and release performances of TSFU

system

参数	天气	$\eta = 0.44$	n = 20	$V = 13 \text{ m}^3$	$V = 52 \text{ m}^3$
Q _c /MJ	晴天	629.9±	682.2 ±	331.0±	464.2±
		98.1	64.3	56.5	77.3
	多云	210. 1	272.8	136.4	109.1
Q _r ∕MJ	晴天	669.7±	827.6±	443.0±	412.8 ±
		22. 2	108.4	5.1	66.9
	多云	228.9±	248.6±	124.0 \pm	262.4 \pm
		15.2	17.1	8.8	40.5
СОР	晴天	4.9 ± 0.4	5.6 ±1.0	3.0 ± 0.2	2.8 ± 0.6
	多云	3.6 ± 0.6	3.8 ±0.1	1.9±0.1	4.1 ± 1.0

根据前期测试结果,同等条件下表冷器-风机的 η 可达0.44,高于试验中所采用的0.28。若试验中 TSFU系统的 η 为0.44, T_w 的变化速率和变化幅度 显著增加,最高和最低 T_w 可分别较现有系统高 2.0℃和低0.4℃(图5)。另一方面,q的变化趋势 与现有系统相同(图6)。但受 η 和 T_w 变化的综合 影响,|q|在晴天日间和夜间分别较现有系统高 (38.0±25.2)%和(57.7±26.1)%,而在多云天日 间和夜间则分别较现有系统高(67.1±4.0)%和 (19.6±16.5)%。此外,由于晴天放热结束后 T_w 较低,不利于TSFU系统在多云天夜间放热,导致|q|在18日夜间系统放热后期低于现有系统。根据模拟的 T_w 计算得出,该条件下TSFU系统在晴天的 Q_c 与 Q_r 可分别较现有系统增大(40.3±6.2)%和(67.4±14.9)%,COP较现有系统升高2.0±0.4,达到4.9±0.4;而多云天的 Q_c 与 Q_r 分别较现有系统增大48.0%和(14.9±7.6)%,COP升高0.5±0.2,达到3.6±0.6(表2)。

number ($n)\,$ of fan-coil units on heat exchange rate ($q\,)\,$ of TSFU system

*n*对 TSFU 集放热的影响与 η 相似。*n* 越多, T_w 在日间和夜间的变化幅度越大, Q_e 和 Q_r 越高。当 *n* 提高到 20 时, 最高和最低 T_w 分别较现有系统高 2. 2℃和低0.5℃(图5)。晴天日间和夜间的|q|分 别较现有系统增加(43.6±27.8)%和(64.8± 31.6)%(图6)。多云天日间和夜间的|q|则分别提 高了(78.3±5.0)%和(21.4±20.3)%。同样受晴 天 TSFU 系统放热结束后 T_w 较低的影响,18 日夜间 出现 TSFU 系统放热结束后 T_w 较低的影响,18 日夜间 出现 TSFU 系统放热后半段|q|低于现有系统的现 象。根据模拟的 T_w 计算得出,该条件下 TSFU 系统 晴天 Q_e 与 Q_r 分别较现有系统增大(46.1±6.3)%和 (76.1±14.7)%, COP 较现有系统升高 2.2±0.4, 达到了 5.6±1.0;而多云天的 Q_e 与 Q_r 分别较现有系 根据上述分析,提高 TSFU 系统表冷器-风机的 η 和 n 可促进 TSFU 系统与室内空气的热交换,进而 提高 TSFU 系统的集放热性能。但另一方面,该条 件下 TSFU 系统放热结束之后的 T_w 较低,不利于在 多云天放热,易出现放热后半段|q|较低的情况,不 利于保持较高的 T_m 。

2.4 V对 TSFU 系统集放热性能的影响

蓄水池水体积(V)主要通过 T_w 来影响 Q_c 和 Q_r 。 为分析上述影响,利用上述数学模型计算不同 V下 T_w 变化,并据此计算 TSFU 系统 $q_\lambda Q_c Q_c$ 和 COP。

当 V 增大到 52 m³时, T_{*}变化幅度减小,其最高 值和最低值分别较现有系统低 1.2℃ 和高 1.5℃ (图7)。受此影响,晴天日间和夜间的|a|是现有系 统的(111.0±12.7)%和(97.5±17.8)%(图8)。 另外,夜间1q1变化较为平稳,尤其是在放热后期高 于现有系统,有助于改善TSFU系统对T"的提高效 果。另一方面,由于晴天 TSFU 系统放热结束之后 T_w较高,不利于19日日间集热,该期间|q|较现有系 统低了(13.1±1.8)%。而在多云天夜间,较高的 T_w有利于 TSFU 系统放热,使得 |q| 较现有系统增加 了(44.6±14.2)%。根据模拟的 T_{w} 计算得出,在该 条件下,晴天 Q。较现有系统增大(11.8±4.8)%,而 Q,和 COP 为现有系统的(95.4 ± 20.9)%,未显著改 善。与此相反,多云天 Q,较现有系统减小了 23.2%, 而 Q, 增大(31.7 ± 20.3)%, COP 提高了 1.0±0.7,达到4.1±1.0。

当 V减小到 13 m³时, T_w 变化幅度增大, 其最高 值和最低值分别较现有系统高 2.9° 和低 0.8° (图 7)。受此影响, 晴天日间和夜间的 |q|分别是现 有系统的(80.4 ± 19.1)%和(92.9 ± 26.4)% (图 8)。在19日日间, 受 TSFU系统在晴天放热之 后 T_w 较低的影响, |q|较现有系统高(8.3 ± 4.8)%。 但在 19日和20日夜间, |q|依然较现有系统低 (36.2 ± 17.5)%。另外, 试验期间, |q|变化幅度较 大,在晴天夜间放热后半段和整个多云天放热期间 低于现有系统,不利于保持较高的 T_{in} 。根据模拟的 T_w 计算得出,该条件下晴天 Q_c 较现有系统减小了 (11.9±3.6)%,而 Q_r 为现有系统的(101.9± 7.0)%,COP为3.0±0.2,未显著改善。多云天 Q_c 和 Q_r 分别较现有系统减小了 3.9%和(37.8± 4.4)%,COP减小了 1.2±0.3,达到1.9±0.1。

Fig. 8 Effects of water volume (V) in tank on heat exchange rate of (q) TSFU system

根据上述分析,在现有系统的基础上将 V 提高 到 52 m³可减小 TSFU 系统 T_w 和|q|的变化幅度,并 增加多云天夜间的 Q_r ,避免 TSFU 系统|q|在放热期 间急速下降而对 T_{in} 产生的影响,但没有显著改善晴 天 Q_c 和 Q_r 。而当 V减小至 13 m³时, T_w 和|q|变化剧 烈,晴天 E_r 未受影响,但多云天 Q_r 较小,且 TSFU 系 统|q|在放热期间急速下降,不利于提高外保温大棚 在冬季夜间的最低 T_{in} 。因此,在生产中应根据实际 条件合理选择 V,以充分发挥 TSFU 系统的集放热 性能。

2.5 经济性分析

在本试验条件下,TSFU系统包含表冷器-风机、 供回水管路、潜水泵、蓄热水池等构件,其中表冷器-风机的成本为1.5~1.7万元,蓄热水池的建造成本 为2.0~2.7万元,供回水管道的成本约为0.2万 元,潜水泵与电气控制设备等的成本约为0.2万元, 合计3.9~4.3万元,折合单位面积的建造成本为 35.3~37.9元/m²,为试验大棚造价的9.8%~ 10.5%。

试验条件下 TSFU 夜间累计供热 1 269.5 MJ, 总耗电量为 118.1 kW · h。根据《内蒙古自治区发 展和改革委员会关于合理调整电价结构有关事项 的通知》(内发改价字[2017]954 号),农业用电价 格为 0.421 元/(kW · h),TSFU 在试验期间的加温 成本为 49.7 元。在试验条件下,使用燃气热风炉 (天然气供暖)提供同样的热量需消耗天然气 42.2 m³(设天然气能源转化效率为80%,天然气 热值为37.59 MJ/m³)^[26]。根据《内蒙古自治区发 展和改革委员会关于调整居民和非居民用管道天 然气销售价格的通知》(内发改价字[2019]251 号),内蒙古自治区非居民用户天然气售价最低为 1.97 元/m³,则试验条件下燃气热风炉的加温成本 为83.1 元,TSFU 系统较燃气热风炉的加温成本 为83.1 元,TSFU 系统较燃气热风炉节约了 40.2%的成本。若将表冷器-风机的 η 提高为 0.44 时,TSFU 系统夜间累计供热1912 MJ,该条 件下使天然气供暖提供同样的热量需消耗天然气 63.6 m³,运行成本为142.8 元,使用 TSFU 系统供 热可节约成本 65.2%。

在试验大棚中使用 TSFU 系统需要投入一定的 建造成本和运行成本,但另一方面,该系统的使用有 助于改善作物生长环境,提高产量。

3 结论

(1)试验期间,TSFU系统可使晴天、多云天夜间外保温大棚的室内气温分别提高(2.5±0.4)℃和(1.1±0.3)℃,有助于改善外保温大棚夜间的室内温度。

(2)试验期间 TSFU 系统在晴天和多云天的放 热量 Q,分别为(433.0 ± 48.6) MJ 和(199.3 ± 0.1) MJ,系统性能系数(COP)达到 2.9 和 3.1,节 能效果显著。

(3)根据模拟分析,将表冷器-风机的 η 和 n 分别提高至 0.44 和 20 时,可分别使晴天 Q,增加
(67.4±14.9)%和(76.1±14.7)%,多云天 Q,增加
(14.9±7.6)%和(17.0±4.5)%,COP达到 3.6±
0.6以上。可通过选用较高的 η 或 n 来提升 TSFU
系统的集放热性能。

(4) 根据模拟分析,将 V 提高到 52 m³,可使 TSFU 系统多云天 Q,提高(31.7 ± 20.3)%, COP 提 高 1.0 ±0.7,但没有改善晴天 Q,和 COP;将 V 减小 至 13 m³,未影响晴天 Q,但使多云天 Q,和 COP 显 著减小。可根据实际条件合理选择 V,进而优化 TSFU 系统集放热性能。

(5) 在试验条件下,使用 TSFU 系统替代以天然 气为燃料的热风炉,可节约加温成本 40.2%,若将 表冷器-风机的 η 提高至 0.44,加温成本可进一步 降低。

参考文献

 [1] 王宇欣,辛粉萍,李雪嫄,等. 日光温室空气-土壤源双效热泵系统设计与性能测试[J/OL]. 农业机械学报,2017,48(11): 350-358.
 WANG Yuxin, XIN Fenping, LI Xueyuan, et al. Design and performance test of air-soil dual-source heat pump system for solar greenhouse[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(11):350-358. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? flag = 1&file_no = 20171143&journal_id = jcsam. DOI:10.6041/j.issn.1000-1298.2017.11.043. (in Chinese)

- [2] SETHI V P, SHARMA S K. Survey and evaluation of heating technologies for worldwide agricultural greenhouse applications [J]. Solar Energy, 2008, 82(9):832 - 859.
- [3] 刘娜,王国强,张丽,等. 热风炉热效率测试系统的设计[J]. 农机化研究, 2014, 36(4): 217-219.
- LIU Na, WANG Guoqiang, ZHANG Li, et al. Design on the thermal efficiency test system for hot-blast stove[J]. Journal of Agricultural Mechanization Research, 2014,36(4):217-219. (in Chinese)
- [4] 唐遵峰,高峰. 燃油热风炉的改进设计[J]. 农业机械学报,2000,31(3):122-123.
- [5] 赵淑梅,庄云飞,郑可欣,等. 日光温室空气对流蓄热中空墙体热性能试验[J]. 农业工程学报,2018,34(4):223-231. ZHAO Shumei, ZHUANG Yunfei, ZHENG Kexin, et al. Thermal performance experiment on air convection heat storage wall with cavity in Chinese solar greenhouse[J]. Transactions of the CSAE, 2018, 34(4): 223-231. (in Chinese)
- [6] LI H, YU Y, NIU F, et al. Performance of a coupled cooling system with earth-to-air heat exchanger and solar chimney [J]. Renew Energy, 2014, 62:468-477.
- [7] OZGENER L. A review on the experimental and analytical analysis of earth to air heat exchanger (EAHE) systems in Turkey
 [J]. Renew Sustain Energy Rev. ,2011,15(9):4483 4490.
- [8] GHOSAL M K, TIWARI G N. Mathematical modeling for greenhouse heating by using thermal curtain and geothermal energy [J]. Solar Energy, 2003, 76(5):603-613.
- [9] OZGENER L, OZGENER O. Energetic performance test of an underground air tunnel system for greenhouse heating [J]. Energy, 2010, 35(10):4079-4085.
- [10] 马承伟. 塑料大棚地下热交换系统的研究[J]. 农业工程学报,1985,1(1):54-65.
 MA Chengwei. Studies on the vinyl-house house heating by the underground heat exchange system[J]. Transactions of the CSAE, 1985, 1(1): 54-65. (in Chinese)
- [11] 孙忠富.地-气热交换塑料大棚中热量平衡的研究[J].农业工程学报,1989,5(2):35-46.
 SUN Zhongfu. Studies on the heat balance of polyvinyl chloride(PVC) greenhouse with an earth-air heat exchanger[J].
 Transactions of the CSAE, 1989, 5(2): 35-46. (in Chinese)
- [12] 王永维,梁喜凤,程绍明,等. 空气流速对温室地下蓄热系统加温时热湿传递的影响[J/OL]. 农业机械学报,2012, 43(11):180-185,219.

WANG Yongwei, LIANG Xifeng, CHENG Shaoming, et al. Effects of air velocity in heat exchanging pipes to heat exchanging and water vapor transformation of underground heat storage system in greenhouse during heating [J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(11): 180-185, 219. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? flag = 1&file_no = 20121134&journal_id = jcsam. DOI:10.6041/j.issn.1000-1298.2012.11.034. (in Chinese)

- [13] 王新,张圆圆,陈度,等. 主动式温室地暖系统温控效果仿真与试验[J/OL]. 农业机械学报, 2017, 48(增刊): 308-314.
 WANG Xin, ZHANG Yuanyuan, CHEN Du, et al. Simulation analysis and field testing of active greenhouse heating system [J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(Supp.): 308-314. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? flag = 1&file_no = 2017s047&journal_id = jcsam. DOI: 10.6041/j.issn. 1000-1298.2017. S0.047. (in Chinese)
- KÜRKLÜ A, BILGIN S, ÖZKAN B. A study on the solar energy storing rock-bed to heat a polyethylene tunnel type greenhouse
 [J]. Renew Energy, 2003, 28(5):683 697.
- [15] GOURDO L, FATNASSI H, BOUHARROUD R, et al. Heating canarian greenhouse with a passive solar water-sleeve system: effect on microclimate and tomato crop yield[J]. Solar Energy, 2019, 188:1349 1359.
- [16] BAZGAOU A, FATNASSI H, BOUHARROUD R, et al. Performance assessment of combining rock-bed thermal energy storage and water filled passive solar sleeves for heating canarian greenhouse[J]. Solar Energy, 2020, 198:8 – 24.
- [17] 孙维拓,郭文忠,徐凡,等. 日光温室空气余热热泵加温系统应用效果[J]. 农业工程学报,2015,31(17):235-243.
 SUN Weituo, GUO Wenzhong, XU Fan, et al. Application effect of surplus air heat pump heating system in Chinese solar greenhouse[J]. Transactions of the CSAE, 2015, 31(17): 235-243. (in Chinese)
- [18] YANG S, LEE C, LEE W, et al. Heating and cooling system for utilization of surplus air thermal energy in greenhouse and its control logic [J]. J. Biosyst. Eng. ,2012,37(1):19-27.
- [19] YANG S, LEE S, KIM Y J, et al. Greenhouse heating and cooling with a heat pump system using surplus air and underground water thermal energy [J]. Engineering in Agriculture, Environment and Food, 2013, 6(3):86-91.
- [20] YANG S, SON J, LEE S, et al. Surplus thermal energy model of greenhouses and coefficient analysis for effective utilization
 [J]. Span. J. Agric. Res. ,2016,14(1):202.
- [21] 张芳,方慧,杨其长,等. 基于 CFD 模型的大跨度温室自然通风热环境模拟[J]. 中国农业气象,2017,38(4):221-229.
 ZHANG Fang, FANG Hui, YANG Qichang, et al. Ventilation simulation in a large-scale greenhouse based on CFD[J].
 Chinese Journal of Agrometeorology, 2017, 38(4): 221-229. (in Chinese)
- [22] 周升,张义,程瑞锋,等.大跨度主动蓄能型温室温湿环境监测及节能保温性能评价[J].农业工程学报,2016,32(6): 218-225.

ZHOU Sheng, ZHANG Yi, CHENG Ruifeng, et al. Evaluation on heat preservation effects in micro-environment of large-scale greenhouse with active heat storage system[J]. Transactions of the CSAE, 2016, 32(6): 218-225. (in Chinese)

- [23] ZHOU S, ZHANG Y, YANG Q, et al. Performance of active heat storage-release unit assisted with a heat pump in a new type of Chinese solar greenhouse [J]. Appl. Eng. Agric. ,2016, 32(5):641-650.
- [24] 方慧,张义,伍纲,等. 大跨度保温型温室的热环境模拟[J]. 中国农业气象,2019,40(3):149-158. FANG Hui, ZHANG Yi, WU Gang, et al. Modelling of thermal climate in a large-scale insulation solar greenhouse[J]. Chinese Journal of Agrometeorology, 2019, 40(3): 149-158. (in Chinese)
- [25] 赵荣义. 空气调节[M]. 北京:中国建筑工业出版社,2008:81-83.
- [26] 柴立龙,马承伟,张义,等.北京地区温室地源热泵供暖能耗及经济性分析[J].农业工程学报,2010,26(3):249-254.
 CHAI Lilong, MA Chengwei, ZHANG Yi, et al. Energy consumption and economic analysis of ground source heat pump used in greenhouse in Beijing[J]. Transactions of the CSAE, 2010, 26(3): 249-254. (in Chinese)