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Pure Pursuit Control Method Based on SVR Inverse-model
for Tractor Navigation
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Abstract; Considering fact that uncertain longitndinal slip of tire and uncertain pavement leads to problem that trajectory of
tractor could not be accurately described by kinematic model, a pure pursuit Controlling method based on SVR inverse-
model was proposed for agricultural machine navigation. This paper analyzed and determined main structure and technical
parameters of method. The inverse-model for forward heading of tractor was established by using method of granular support
vector regression, and the corresponding relation function of kinematic theoretical curvature and actual curvature was
obtained. The error of pure pursuit navigation model was corrected via inverse-model, thus the adaptability and dynamic
performance of pure pursuit Controlling method were improved. The path tracking experiments of navigation system for
tractor was conducted, which showed that the maximum of linear tracing pitch yaw roll error was less than 0. 061 4 m when
the speed of agricultural machinery was 1.2 m/s and path length was longer than 125 m. Compared with the method of
conventional pure pursuit navigation model, the pure pursuit Controlling method based on SVR inverse-model has better
linear tracking performance. Field experiment results indicated that the maximum lateral deviation was 0. 088 7 m when the
running speed of the tractor was 0. 5m/s. Meanwhile, the controller significantly improved precision of field experiment.

Based on path tracking experiments and field experiments, the navigation Controlling method could be applied to automatic

row-controlled operation of 2BFQ -6 type direct-seeding combined dual purpose planter for rapeseed.
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0 Introduction

Controlling method of farm path tracking was key

U200 Tt was studied

technique of intelligent navigation
by many scholars at home and abroad including
proportion integration differentiation control*™* | fuzzy
control®~* | optimal control”"*' and pure pursuit

9-10] differentiation

control Proportion  integration
control and fuzzy control didn’t rely on specific
mathematical models. However, optimal control and
pure pursuit control relied on specific mathematical
models. Fuzzy control, genetic algorithm and particle
swarm optimization controller were used to optimize
parameters by Li et al'”’, Zou et al'"'’ and Meng et
al'”? nevertheless few

' respectively.  Therefore,

mathematical models were optimized. Kinematic model
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was optimized by Erkan et al'™ who used stimulus-
response method identification method. However,
Linear model had limit fitting capability. Self-tuning
controller was used to optimize kinematic model by Bai
et al'™ | which could improve tracking performance of
curve path and could not improve tracking performance
of line path. Neural networks were used to turn

1[15]

identification system model by Zhu et a and

Hamzaoui et al''®’.

The neural networks had high
robustness and nonlinear fitting capabilities, however it
required many training samples, and real-time
computing performance was weak and easy to fall into
local minimum solution.  Appropriate  modeling
approach could improve control quality.

In order to establish high-precision navigation tractor

models for improving tractor linear tracking accuracy,
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SVR ( Support vector regression ) model based on
tractor navigation inverse model of pure pursuit
controlling method was proposed. SVR regression
method was based onstructural risk minimization. It is
more stable and stronger generalization ability than
conventional methods, because it used small samples
and statistical learning methods to establish regression
model. Navigation controller was designed by using
this method. The controller could be applied to
automatic row-controlled operation of 2BFQ — 6 type

direct-seeding combined dual purpose planter for

rapeseed.
1 Structure of tractor navigation system

With navigation objects as Dongfanghong — 1.X854
tractor for 2BFQ — 6 type direct-seeding combined dual
purpose planter for rapeseed. The system was divided
into hardware and software. The hardware included
RTK - GNSS systems, DWQT - BZ -V - 60 — G-type
angle sensor, NI — USB - 6216 data card, TPC6000 —
6100T type IPC and steering actuators. The software
was pure pursuit inverse model control based on SVR.
SINAN M300 RTK — GNSS system was used to receive
location information. DWQT — BZ — V — 60 — G-type
angle sensor and NI — USB - 6216 data card was used
to collect signal of front wheel angle. Navigation
controller operation output steering control signal that
was based on pose information and angle signal. Full
hydraulic steering control valve system made tractor to
navigate by signal of pure pursuit control inverse-model

control. The system is presented in Fig. 1.

Pose information

RTK-GNSS system

Serial ports T
, ! Assembly
Industrial computer '
\ Pure pursuit control | .
U
Path | inverse—model ! Executive body| Tractor

information |nethod based on SVR |

Front corner Voltage signal

Angle sensor

Fig.1 Structure diagram of navigation system

2 Design of pure pursuit control method
based on SVR inverse-model

Four parts of pure pursuit control method based on
SVR inverse-model were Kalman filter, pure pursuit

model, SVR inverse-model and variable universe fuzzy

controller'™ . The structure of pure pursuit control

method based on SVR inverse-model was visualized in

Fig. 2.
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Fig.2  Schematic block of pure pursuit control method

based on SVR inverse-model

where 6 is deviation of heading angle with angle of

path direction; «, is the turning angle from pure

b
pursuit model; a’ is turning angle from SVR inverse-
model ; @, is the realized steering angle.
2.1 Design of Kalman filter

Error of SINAN M300 type RTK-GNSS system was
+ 1.5 cm. Meanwhile, there were other errors that
caused by tilt and shake of tractor. Sampling error also
could not be ignored. They will affect quality of
controller navigation path. For improving location
accuracy, the Kalman filter algorithm was introduced to
process the initial locating results''. By using Kalman
filter, this algorithm could filter handle deviations of
lateral and direction. According to data of preliminary
test, (), was processed incentive noise covariance-
driven of lateral deviation d, it was set to 0. 1. R, was
measured noise covariance-driven of lateral deviation,
and it was also set to 0. 1. ), was processed incentive
noise covariance-driven of direction deviation 6, it was
set to 0. 6. R, was measured noise covariance-driven of
direction deviation, it was also set to 0. 8. Combining
Kalman filter prediction and linear interpolation,
position of tractor could make up in sampling interval.
Experiments showed that this algorithm could
effectively improve speed adaptability.
2.2 Design of pure pursuit controller
2.2.1 Kinematics model of the tractor

The simple kinematics model for tractor was
established, because some factors were difficult to
measure including longitudinal slip of tire and axle
rigidity. The kinematic model of tractor was similar to
the well-known bicycle model™'. The kinematic

model of tractor was given as follow

_vtano _

l

where 6’ was change rate of the heading angle; a was

0’ (1)
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the front wheel turning angle; » was the real-time

speed; [ was the wheelbase and 7y was turning

curvature.

2.2.2 Design and improvment of pure pursuit model
Pure pursuit model was used for calculating path of

tractor by choosing suitable beforehand point''®’ as

Fig.3. Where L, was distance of beforehand point, R

was turning radius of tractor and O was center of a

circle.

Tractor

Target path

!
1
]
|

!
IE

(6]
Fig.3 Geometric diagram of pure pursuit model

Function in accordance with the geometry of pure
pursuit model shown in Fig. 3.
2(dcos® — /L, — d’sinf)
Y= 2
L(l
Egs. (1) and (2) could be integrated to obtain .
21(dcosf — /L), — d’sinf)
L2

d

(2)

(3)

o = arctan

When the value of L, was determined, d and 6 were
determinants of front wheel turning angle o. There was
only one controllable parameter L,. The system could
not adjust the control strategy flexibly when forward
speed of tractor is different. Therefore, it introduced
two adjustment coefficients &, and §&,. &, affected
control effectiveness of d in the modified model, and &,
of 6. ¢ and &,

respectively affected control accuracy and stability of

affected control effectiveness

tracking system.

21(&,dcos® — &, /L, —d’sinh)
Ly

(4)

o = arctan

L,, & and &, varied with speed v of tractor change.
The system stability was more important when the
speed v was high. Therefore, it would reduce &,
increase &, and L, in the high speed. The method
improved system stability under premise of ensuring

accuracy. The relation was as follows

. _{1.6+min(1.5(v—0.7),1.6) (v>0.7)
‘1.6 (v<0.7)
: _{1 (v>0.7)
"1 40.6(0.7 -v) (v<0.7)
: _{1+min(0.5(v—0.7),1.2) (v>0.7)
1 (v<0.7)

(5)

According to Eqgs. (4) and (5), the pure pursuit
controller was designed.
2.3 Design of inverse-model based on SVR

The accuracy of control model was improved by
establishing inverse-model.  Because there were
effected longitudinal slip of tire, pavement properties
vehicle angle and sensor system error. Kinematic
model could not accurately describe trajectory of
tractor. Meanwhile, it was difficult to deduce model
from forward direction. The data of 6" and «, were
recorded to design inverse-model of relationship
between 6’ and «,. The inverse-model was used to
correct control error that caused by simplification
kinematics model. The errors of 8" data were so larger
that it is impossible to establish model, therefore, the
original @' data was processed by Gauss-granular
pretreatment. Structure of inverse-model by granular
support vector regression was shown in Fig. 4. Where

{a,, a) | was the set of Gauss-granular.

ro

ar

Gauss—granular
preprocessing

l{a, O

Inverse—model
based on SVR

Position .
information,@

a o
? Navigation

system of tractor

Fig.4 Structure of inverse-model by granular support

vector regression

2.3.1 Gauss-granular pretreatment

In order to establish relationship between actual
turning curvature y, and theoretical curve curvature
Y, » it was introduced theoretical front wheel turning
angle . v, and a, were recorded by navigation system
that was based on Eq. (1), the vy, and «, were
calculated in Eq. (6).

a, =arctan(y,l) = arctan (%l )

(6)

tana,

7”1 = l

Eq. (6) showed that relationship of actual turning
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curvature y, and theoretical curve curvature y, could
be transformed into relationship of «, and «,. It was
a, =f(a,). a, was calculated by pure pursuit model
then used to get correction turning angle a’ by
relationship model of a, with «,. «a, corresponded to
theoretical front wheel turning angle of pure pursuit
model. «’ was actual need turning angle for achieving
theoretical curve curvature.

0" and v were used to obtain @, by Eq. (6), 6 was
calculated information. ~ Sampling

frequency of position of RTK - GNSS was 2 Hz,

therefore, frequency of «, data was also 2 Hz.

from  position

Sampling frequency of NI — USB — 6216 data card was
5000 Hz, a, was average value of 500 data, and
frequency of a, was 10 Hz. In order to make «, and o,
to have same frequency, the average value of A in the
location signal scan internal was used to set up the data
setA:{a,, a,l.

a, and o, data corresponded to the distribution map
as shown in Fig. 5. Error of measurement was caused
by error of system. The efficiency and accuracy of
model that use the original data were low and difficult

to improve control accuracy.

40 r
+ Actual test data

30 t —corresponding relationa, =a,, 3 %
20t o /

10

10 F

20+

30 F

Theoretical front wheel turning angle /(%)

40 - : :
—30 =20 =10 0 10 20 30

Actual front wheel turning angle a,/(%)

Fig.5 Relation graph of theory and practice front wheel angle

It was difficult to obtain a precise mathematical
model. Therefore, data should pre-process by Gauss-
granular method. The method was to replace data of a
certain range with a certain rule to a granular. Because
o, was measured with high accuracy. The data were
preprocessed by longitudinal granularity method. The
method steps were showed as follows

(1) Within a certain range which center was «,; and
width was 2u (a,, «,) data was constructed into a
granularity. Granularity size of information granularity
was [@, —p, o, +u].

(2) In the range «, data was averaged by Gauss

weighted, the center point of range was o,,.

w. = ef(lar]—ari\)/(Z(rz)
7

Z}wjamj (7)
—_ /=
2w
j=1

where j was sequence number of data in the range of

!
«a mi

information  granularity; n was sample size of

information granularity ; w; was Gauss weighted; o was

' was

mi

the standard deviation of Gauss function, and «

values of information granularity.

(3) Values of o,

i

was calculated form a set (a,,

’
mi

Width of set was determined by width of front wheel

o) of granularity.

turning angle «,. o, was varied greatly ( +10°) when
Tractor was turning or adjusted. «, was varied smaller
when tractor was steady tracking state, its range
reaches +2°. The adaptability of method that used to
fix width 2u was low. Therefore, the dynamic
granularity method was used to solve the problem of
particle size adaptability. The width 2u of information
granularity changes with overall width of set A. The
dynamic granularity calculation steps of data set were
showed as follows:

o, | of

rmin 9 ~"rmax

(1) According to the width a, € [«
original data set A, width 2u of the information
granularity was determined.

p= (0,

(2) Granularity center was «,,.

_armin>/n/ (n,:24)

a, =0, +ip (i=1,2,---,n")

(3) Structuring information granularity was based on
o, and w. And the adjacent information granularity
range was partially overlap, which enhances the
granularity data linearity. o was set to u/2, o, was
calculated according to the granularity method above.
new set {a,, a' | of dynamic granularity data was
composed.

2.3.2 Application of support vector regression

SVR support vector regression method was used to
identify and build model from set {«,, «/ |. Fitting the
data is { («;,y,),i=1,2,---,1l} ,x, e R, [ was sample
size. In this paper, x = a, and y = a’,. SVR was
realized through practical problems were mapped to
high-dimensional feature space by nonlinear mapping,
discriminant  function in  high

structure linear

dimensional space realized non-linear regression
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function of original space.

f(x) =w'e(x) +b
where w was the weight vector, ¢ (x) is nonlinear
onlinear mapping of high-dimensional feature space, b
was a bias term.

In order to improve the robustness of method, this
method introduced insensitive loss factor &, loss
function was L (in Eq. (8) ). The definition of value
is loss less when the error of model with the actual
value was less than .

(ly -flx)Ise)
(ly=f(x)1>e€)
(8)

Minimizing risk of high-dimensional feature space

0
L(y.f(x),&) = ly—fx) | —e

function was based on the SRM principle. Therefore,
the problem was equivalent to | w | > minimization
problem. The complexity of fitting function was
reduced by relaxation factor {; and the penalty factor

C. the function was showed as follow

1 1
min gww e ZETC T L
s.t. weo(x,) +b-y <e+{, 9)
y, —w'e(x,) —b<e+{
(£,20,0' =0, i=1,2,,1)

The Lagrange function was introduced to solve the

minimization problem. The problem was further

transformed into a dual problem

min>-(B-B")"Q(B-B") +
B.B

e Z (B, +B) + ; v, (B, +B) (10)

i=1
!

st > (B-B")=0

izl

(Ogﬁl ;Bl* gC;I‘ :1 92’“'91)
Where 8,8" were Lagrange multiplier, () was kernel
function (K(x,,x;) :qa(xi)']‘go(xj) ).

The approximation function was a decision function

flx) = Z (=B, +B )K(x,,x) +b  (11)

SVR kernel function K(x; ,%;) determined structure
and characteristics of high dimensional space, and then
determined the performance of the algorithm. RBF
kernel function was used to fit regression model. & and
C was important parameters for computation time and

accuracy of the model. & was set to 10, C was set to

0.2.
2.3.3 Converse modeling

Theoretical front wheel turning angle «, was
calculated by real-time location information and
running speed. Meanwhile the relationship between o,
and a, was identified by inverse model based on SVR.
modeling specific steps:

(1) The data set A: {a,, @, | was acquired by
80 seconds for model has good timeliness. The
frequency of collecting data set was 2 Hz in view of
localization frequency. The new data would replace the
old data before 80 s, and set A contains 160 data.

(2) The granularity data set A was obtained by the
dynamic Gauss-granularity.

(3) Regression model f(a,) of set {(a,, a’,),
i=1,2,---,n", n' =24} was identified by support
vector regression.

The inverse-model was used to correct output value
of the pure pursuit model. Revised front wheel turning
angle o' was calculated by inverse function f~' (a,) of
inverse-model.

2.3.4 Simulation of GSVR inverse-model

In order to test the performance of model, the
inverse-model was emulated. Test was used the
navigation system of Dongfanghong LX — 854 type
tractor. The collection frequency 6 was 2 Hz and front
wheel turning angle «, was 10 Hz. According to
experimental data, the model of tractor course was
simulated by using the inverse-model and the kinematic
model. Both results were compared. The simulation
steps were as follow ;

(1) Inverse-model was established by SVR modeling
method when the tractor navigation system was linear
tracking.

(2) Simulation rate of heading angle 6’,, was
calculated by kinematics model and turnning angle o, .
Simulation heading angle 6,,, was integral of 6,,,.

(3) a, was revised @, by inverse-model. Inverse-
model rate of heading angle 60’y,, was calculated by
kinematics model and @, . Inverse-model heading angle
Oy Was integral of 6[qy-

The initial heading angle of simulation experiment
was —0.21°

The results of model comparison were shown in Fig. 6a.

, and simulation forecast time was 30 s.

a, equaled «, in the ideal modle which does not

consider influence of tire longiindinal slip, the sensor
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system error and pavement properties. f ( ar) was
different with ideal model, and the difference was
corrected ideal model by f (@, ). The comparison
results of inverse-model simulation and actual of
heading course were shown in Fig. 6b. The average
prediction difference between simulation of kinematics
model and actual heading course was 1.43°. The
average prediction difference between simulation of
inverse-model and actual heading course was 0.26°.

The simulation experiments showed that the inverse-

model has better forecasting ability and higher
accuracy.

£ 20

E 15

%p 1.0

&

E 05

)

0

£

T —05

g Ideal model a =a,

5 -1.0 /- ~ GSVR inverse—model f{a,)

g—l.ﬁ =1.0-05 D 45 10 1.5 20 25

E Actual of ront wheel tuming angle a&,/(°)

(a) Comparison of models

----- Actual of the heading &
— Inverse model simulation of the heading 85,5
== Kinematics model simulation of the heading 8,

0 5 10 15 20 25 30
Times/s
(b) Comparison of heading angle

Fig.6  Contrast diagram of simulation experimen

3 Experimentation of navigation controller

The controller of navigation based on SVR inverse-
model used MFC ( Microsoft foundation classes )
framework with C + + program. It was loaded into
the TPC 6000 - 6100T type

computer. The controller experiment was carried out on

industrial ~ control
LX - 854 tractor navigation system for direct-seeding
combined planter( Fig. 7). Using Sinan M300 RTK -
GNSS system to obtain the tractor navigation and
position information, acquisition frequency of position
information was 2 Hz, and horizontal positioning
£ (10 +1 x10°D) mm. The

accuracy was

performance experiment, comparison experiment and

Fig.7 Navigation system of agricultural machine
1. System of terminal 2. Electronic steering operator

3. Angular transducers 4. RTK — GNNS

field experiment for navigation system were conducted
respectively.
3.1 Performance experiment of navigation system
The performance experiment of navigation controller
was conducted on standard cement road in Huazhong
Agricultural University, and the tracking controller
used SVR inverse model. The equation of target line
was calculated by position of two ends. The penalty
coefficient C and epsilon insensitive loss factor & of
support vector regression ( SVR) were 10 and 0. 2.
SVR used the
parameters of pure pursuit model were set up by

Eq. (5). The speed v of tractor was 1.2 m/s, and the

Gauss kernel function, and the

experiment was carried out in 3 groups. Lateral
deviation of line tracking of navigation system was
recorded. The sampling rate was 2 Hz. The experiment
results were showed in Tab. 1, and the lateral deviation
of No. 1 experiment was showed in Fig. 1. The results
showed that the controller had smaller characteristics of
lateral deviation and higher

maximum tracking

accuracy.

Tab.1 Performance experimental results of

straight line path

Maximum Mean Standard Driving
Experiment

N lateral absolute deviation/  distance/

0.

deviation/m  deviation/m m m

1 0.061 4 0.0154 0.0169 168

2 0.0558 0.0145 0.017 8 140

3 0.0573 0.0149 0.0173 125
Mean 0.058 2 0.0149 0.0173 144

3.2 Comparison experiment of navigation system
Comparison experiment of navigation controller was

conducted on standard cement road. Conventional
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tracking controllers used pure pursuit model with
unrevised front wheel angle a. According to different
driving speed, the level of experiment speed was
divided into five levels: 0. 6 m/s, 0.8 m/s, 1.0 m/s,
1.2 m/s and 1.4 m/s. The results of experiment were
showed in Tab. 2, which showed that the maximum
lateral deviation of inverse model group were reduced
0.0146 m, 0.022 0 m, 0.038 3 m, 0.036 8§ m and
0.058 3 m, arespectively, and the average absolute
deviation decreased 0.006 0 m, 0.009 4 m, 0.011 2 m,
0.016 6 m and 0.027 9 m, The

respectively.

results showed that the controller based on SVR inverse
has
adaptability.

model better control precision and speed

0.06 ¢
0.04
0.02 H

0
0021

—0.04 |

Lateral deviation/m

0.06

—0.08 . . s . . N . .
0 20 40 60 80 100 120 140 160
Driving distance/m

Fig.8 Lateral deviation diagram of No. 1 straight line path

Tab.2 Comparative experimental results of straight line path

Average speed/ Maximum lateral Mean absolute Standard Driving
Level Control method
(m-s™") deviation/m deviation/m deviation/m distance/m
0. 698 Inverse model 0.0300 0.007 2 0.008 8 112
! 0.624 Comparison 0.044 6 0.0132 0.0157 125
0.786 Inverse model 0.0393 0.0145 0.014 8 112
2 0. 800 Comparison 0.0613 0.0239 0.014 8 144
1. 026 Inverse model 0.040 4 0.0128 0.0158 134
3 0.963 Comparison 0.0787 0.0240 0.017 1 144
1.218 Inverse model 0.057 3 0.0149 0.017 3 125
4 1.203 Comparison 0.094 1 0.0315 0.0203 102
1. 485 Inverse model 0.0620 0.0192 0.0194 99
> 1.361 Comparison 0.1203 0.047 1 0.043 4 70

3.3 Field experiment of navigation system
Navigation system test was conducted in rape field
base of Huazhong Agricultural University in 21 May
2015. The plots length was 50 m. Experiment used
Dongfanghong LX — 854 tractor hanging 2BFQ -6 type
direct-seeding combined dual purpose planter for
rapeseed. In the experiment, the tracking controller
based on SVR model and the conventional models were
used respectively for straight line tracking. The driving
speed was 0.5 m/s, and results of experiment were
showed in Tab. 3, which showed that pure pursuit
control method based on SVR

suitable operation for planter in field, and control

inverse-model was

precision was lower compared with road test. Because
the turning characteristics are influenced by front
positive pressure, land leveling, the whole of the
machine rigidity, soil solid degree, soil moisture and
vegetation cover and other factors when planter worked
in the field, it was more difficult to deduce tractor
driving model of field from dynamic point. So it was
more feasible and effective to establish a inverse model
for improving path tracking accuracy in the field

navigation.

Tab.3 Experiment results of field straight line path

Maximum Mean
Control Standard
lateral absolute
method deviation/m
deviation/m deviation/m
Inverse model 0.088 7 0.036 1 0.0433
Comparison 0.1279 0.0553 0.0376

4 Conclusions

(1) Navigation system of Dongfanghong LX - 854
tractor was constructed and pure tracking control
method based on SVR inverse model was studied. In
order to achieve tracking control optimization method,
SVR inverse-model was used to correct control error
that caused by simplification kinematics model. The
results of control method for road linear tracking
experiment showed that the driving distance was longer
than 125 m, speed v was 1.2 m/s, the maximum
horizontal deviation was less than 0. 061 4 m and the
absolute average deviation was not more than 0. 015 4
m. The method had higher precision and speed
adaptability compared with conventional tracking
control method. The results of field experiment showed

that pure pursuit control method based on SVR inverse-
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model was suitable for planter in field.

(2)The accuracy of field experiment was lower than
that of pavement experiment because the precision was
influenced by friction coefficient of tire and soil, soil
water content.

hardness, soil roughness, soil

Analyzing and studying effect of various factors on the
field navigation optimized controller parameters and
mathematical model would improve adaptability and

precision of field navigation.
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HLIZ S LI Ay [0 B, 42 T —F 3L T SVR (Support vector regression ) 39 [ 462 71 4 4t 37 B 5 i 0038 5 2 0y vk o SR A
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Pure Pursuit Control Method Based on SVR Inverse-model
for Tractor Navigation

Zhang Wenyu Ding Youchun Wang Xueling Zhang Xing Cai Xiang Liao Qingxi
(College of Engineering, Huazhong Agricultural University, Wuhan 430070, China)

Abstract; Considering the fact that uncertain tire sliding and uncertain pavement lead to trajectory of
tractor could not be accurately described by kinematic model, a pure pursuit control method based on
SVR inverse-model was proposed for agricultural machine navigation. This paper analyzed and determined
the main structure and technical parameters of the method. The inverse-model of forward heading in
tractor was established by using the method of granular support vector regression, and the corresponding
relation function of kinematic theoretical curvature and actual curvature was obtained. The error of the
output of the pure pursuit navigation model was corrected by inverse-model, thus the adaptability and
dynamic performance of pure pursuit control method were improved. The path tracking experiments
carried out on navigation system of the tractor and the pavement experiment results showed that the
maximum of linear tracing pitch yaw roll error was less than 0. 061 4 m, when the speed of agricultural
machinery was 1.2 m/s and path length was longer than 125 m. Compared with the method of
conventional pure pursuit navigation model, the pure pursuit control method based on SVR inverse-model
has better linear racing performance. Field experiment results concluded that the maximum lateral
deviation was 0. 088 7 m, when the running speed of the tractor was 0. 5 m/s, and the proposed controller
significantly improved precision of field experiment. Based on the path tracking experiments and field
experiments results, the navigation control method could be applied to automatic row-controlled operation
of 2BFQ — 6 type direct-seeding combined dual purpose planter for rapeseed.

Key words: tractor; navigation; inverse-model; support vector regression; pure pursuit model
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Fig. 1  Structure diagram of navigation system
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support vector regression
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