doi:10.6041/j.issn.1000-1298.2013.01.016

# 基于嵌入式力学传感器的圆锥指数仪设计与试验\*

孟繁佳! 孙宇瑞! 王聪颖! 林剑辉2

(1. 中国农业大学信息与电气工程学院,北京 100083; 2. 北京林业大学工学院,北京 100083)

摘要:为消除在测量过程中因圆锥杆受被测材料摩擦力所产生的测量误差,改进了圆锥指数仪设计,将微型力学传 感器嵌入到圆锥杆下端,实现了对土壤和青贮玉米饲料压实度的精确测量。试验结果表明,测量 2 种土壤压实度 过程中,原有圆锥指数测量方法因圆锥杆受摩擦力作用所产生的测量误差可忽略不计。而在青贮玉米饲料压实度 测量过程中,2 种不同紧实度样本中圆锥杆受摩擦力约占压力传感器测量值 32.56% 和 34.05%,当圆锥头不受阻 力时,嵌入式力学传感器测量值为零,而压力传感器测量值约为 110 N 和 280 N,表明原有测量结果存在较大误差。 关键词:圆锥指数仪 土壤 青贮饲料 压实度 嵌入式力学传感器 中图分类号: S237 文献标识码: A 文章编号: 1000-1298(2013)01-0080-05

# Design and Experiment on Improved Cone Penetrometer with Embedded Force Sensor

Meng Fanjia<sup>1</sup> Sun Yurui<sup>1</sup> Wang Congying<sup>1</sup> Lin Jianhui<sup>2</sup>

(1. College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
 2. School of Technology, Beijing Forestry University, Beijing 100083, China)

Abstract: With the aim to preclude the effect of penetration friction component (PFC) between the penetration shaft and surrounding material during a penetration process, an improved cone penetrometer with a mini force transducer embedded in the cone tip was developed. This kind of cone penetrometer could measure the density of soil and silage correctly. The results showed that the effect of PFC could be negligible in the two kinds of soil samples. But during the density measurement of the two different density chopped maize samples, PFC accounted for 32.56% and 34.05% respectively in the measurement value of force sensor. When there was no resistance on the cone, the measurement value of embedded force sensor was zero, whereas the measurement value of force sensor were about 110 N and 280 N. Appreciable error was found in the original test results for chopped maize.

Key words: Cone penetrometer Soil Silage Density Embedded force sensor

# 引言

圆锥指数仪是一种常用的测量土壤压实度的仪器<sup>[1]</sup>,土壤压实度与种子发芽破土率、根系发育情况及产量密切相关<sup>[2-3]</sup>。近年来,圆锥指数仪被应用于青贮饲料压实度测量领域<sup>[4-5]</sup>,由于青贮饲料的生产过程是在厌氧环境下进行的,青贮饲料压实度直接影响饲料品质,因此精细测定青贮饲料的压

实度分布对指导青贮饲料精细加工、提高饲料品质 具有重大意义<sup>[6-8]</sup>。

由圆锥指数仪测量得到的参数为圆锥指数 (Cone index,CI),定义为圆锥探头插入被测物所受 的阻力与圆锥上端截面积之比。目前国际上圆锥指 数仪的设计大都采用"二力杆"结构<sup>[2,9-10]</sup>,即在圆 锥杆上端安装压力传感器,在圆锥贯入被测材料过 程中,将锥尖所受阻力传递到位于锥杆另一端的压

收稿日期:2011-12-21 修回日期:2012-01-29

<sup>\*</sup>国家自然科学基金资助项目(30971696)和国家国际科技合作项目(2010DFA34670)

作者简介: 孟繁佳,博士生,主要从事土壤和青贮饲料压实度精细测量方法研究,E-mail: mengfanjia@126.com

通讯作者:孙宇瑞,教授,博士生导师,主要从事土壤物理特性测量理论与方法研究,E-mail: pal@ cau. edu. cn

力传感器。为了消除由尺寸、操作速度等差异所引起的测量误差,美国农业与生物工程师协会(ASABE)制定了圆锥指数仪设计和操作标准<sup>[11-12]</sup>,其中规定,要保证圆锥以恒定速度(30 mm/s)贯入土壤,圆锥头底面直径规定为12.83 mm,大于锥杆直径9.53 mm,用于消除锥杆在贯入土壤过程中所受到的摩擦力。

尽管如此,由于土壤是复杂的弹-塑性多孔介 质,一些学者认为锥杆与被测材料之间的摩擦力仍 然存在,即安装在圆锥杆上端的压力传感器所获取 的圆锥阻力是锥尖所受阻力和锥杆受被测材料摩擦 力的叠加,而锥杆与被测量材料之间的摩擦力影响 了圆锥阻力的测量精度。为了精确测量土壤圆锥指 数, Armbruster 等<sup>[13]</sup>和 Adams 等<sup>[14~15]</sup>改进了圆锥 指数仪设计。但所得出的结论相差较大,前者的研 究结果表明安装在锥杆上端的压力传感器因锥杆受 土壤摩擦力产生的测量误差高达40%,而后者的研 究结果表明圆锥头后端的压电式力学传感器和锥杆 上端的压力传感器输出近似相同,误差范围为 ±3%。对于青贮饲料压实度测量, Buescher 等提出 了一种应用圆锥指数仪测量青贮裹包饲料压实度的 方法<sup>[5]</sup>,但在饲料压实度测量过程中,对测量得到的 圆锥阻力值是否受锥杆摩擦力影响未作深入研究。

针对压电式力学传感器精度较低的缺点,本文 采用应变原理并参照 ASABE 标准设计一种圆锥指 数仪,用于精确测量土壤和青贮饲料的压实度,并对 原有测量方法中锥杆所受摩擦力对圆锥指数测量精 度的影响进行试验。

#### 1 仪器原理与设计

#### 1.1 嵌入式力学传感器结构与测量原理

嵌入式力学传感器结构示意图如图 1 所示,由 圆锥杆、弹性体、圆锥头、铂电阻应变片和导线 5 部 分组成。传感器几何尺寸严格按照 ASABE 标准设 计,圆锥杆外径 9.53 mm,圆锥头底面直径 12.83 mm,圆锥角 30°。弹性体呈圆柱形,材料选用 17-4PH型不锈钢,其上下端均以螺纹形式分别与 圆锥杆和锥头相连接。为了提高传感器的灵敏度和 稳定性,选用 8 片基值为 350 Ω 的铂电阻应变片,分 为上、下两组,每组 4 片,分别按横向和竖向均匀粘 贴于圆柱形弹性体四周(图 1),应变片尺寸为 3 mm×3 mm。在弹性体上端均匀分布有 4 个导线孔,圆 锥杆中的导线可通过导线孔与各应变片相连接。

惠斯通电桥的4个桥臂电阻分别由上、下两片 应变片串联组成,使得每个桥臂电阻达到700Ω,有 效降低了传感器的功耗。具体电桥线路如图2所



图 1 传感器结构示意图

Fig. 1 Schematic diagram of structure of sensor
1. 圆锥杆 2. 通孔 3. 导线 4. 螺纹 5. 导线孔 6. 横向粘贴 应变片 7. 纵向粘贴应变片 8. 弹性体 9. 圆锥头

示,当弹性体受压产生形变时,桥臂电阻也随之发生 变化,电桥输出电压信号 U。计算公式为



#### 1.2 圆锥指数仪系统设计

圆锥指数仪采用齿轮齿条传动原理,结构如 图 3 所示<sup>[10]</sup>。依照 ASABE 标准,直流电动机以恒



图 3 圆锥指数仪结构示意图

Fig. 3 Structure diagram of penetrometer

1. 控制箱
 2. 行进深度传感器
 3. 压力传感器
 4. 导轨
 5. 圆
 锥杆
 6. 齿条
 7. 底座
 8. 直流电动机
 9. 滑块
 10. 嵌入式力
 学传感器

定速度 30 mm/s 驱动滑块沿导轨上下移动。在嵌入 式力学传感器圆锥杆上端安装有 HBM - C9 型压力 传感器(量程 0~1000 N,精度 ±0.05%),当滑块向 下滑动锥头受到阻力时,设备可同步实时获取两力 学传感器信息。

测量与控制系统由数据采集与控制模块、传感器、直流电动机、PDA 和电池 5 部分组成,硬件框图如图 4 所示。数据采集与控制模块由 MSP430 单片机、控制电路、放大电路组成,负责接收 PDA 指令,并根据指令控制电动机的运转和采集多路传感器的信号,并实时传输到 PDA 进行存储。



# 2 试验结果与分析

# 2.1 力学传感器标定试验

力学标定试验系统如图 5 所示,由圆锥指数仪、 支架、压力弹簧筒、TCS - 300 型数字电子秤组成。 其中数字电子秤提供力参数测量基准,测量范围0~ 300 kg,分辨力 0.05 kg,满量程测量精度为 ±1%。 圆锥指数仪放置于支架上,仪器底座用螺栓与支架 上表面固定,压力弹簧<u>安装在</u>一个内径 50 mm、长



图 5 力学标定试验系统示意图

Fig. 5 Layout of calibration system for mechanics
1. 圆锥指数仪 2. 压力传感器 3. 嵌入式力学传感器 4. 数字
电子秤 5. 压力弹簧 6. 锁紧螺栓 7. 支架

400 mm 的套筒内。同时记录压力传感器和嵌入式 力学传感器输出信号与数字电子秤输出值,即可得 到两传感器标定曲线(图6)。图6为0~1000 N范 围内两传感器的标定结果,它表明二者输入-输出特 性均呈严格的线性关系。



进一步对两传感器进行动态标定试验,电动机 驱动圆锥以恒定速度贯入弹簧筒,圆锥指数仪同步 实时采集两力学传感器信息。两传感器 1:1动态标 定结果如图 7 所示, $R^2$  =0.9996,RMSE 为 3.2414, 二者呈严格的线性相关关系,斜率为 1.0025,表明 对于被测物压力弹簧,嵌入式力学传感器与压力传 感器具有相同的测量结果。



#### 2.2 对不同材料压实度的测量结果分析

为了实际检验嵌入式力学传感器性能,评价原 有测量方法中锥杆所受摩擦力对圆锥阻力测量精度 的影响,应用改进的圆锥指数仪对不同材料的压实 度进行测量,并将嵌入式力学传感器与安装在圆锥 杆上端的压力传感器测量结果进行对比,分别选用 沙土、壤土和青贮玉米饲料作为试验材料,试验样本 参数见表 1。试验系统如图 8 所示,圆柱桶高 500 mm,底面直径 200 mm,在其上顶盖和底面中心 均有一圆形通孔。在装填材料前,在圆桶内底部放 置一张塑料薄膜,防止在装填材料前,在圆桶内底部放 置一张塑料薄膜,防止在装填材料前,在圆桶内底部放 置一张塑料薄膜,防止在装填材料前,在圆桶内底部放 置一张塑料薄膜,防止在装填材料前,在圆桶内底部放 置一张塑料薄膜,防止在装填材料前,在圆桶内底部放

表 1 试验样本参数 Tab.1 Information of samples

| 样本序号 | 材料      | 容重/g·cm <sup>-3</sup> | 含水率/% |
|------|---------|-----------------------|-------|
| 1    | 沙土      | 1.53                  | 5.35  |
| 2    | 壤土      | 1.54                  | 5.14  |
| 3    | 青贮玉米饲料1 | 0.24                  | 63.43 |
| 4    | 青贮玉米饲料2 | 0.70                  | 63.43 |

试验结果如图 9 所 示,在圆锥贯入过程中嵌 入式力学传感器与安装于 圆锥杆上端的压力传感器 测量结果非常相似,当圆 锥从圆柱桶下底面穿出 时,两传感器测量值均接 近于零。测量结果相关分 析表明(图 10),在沙土和 壤土中,两力学传感器测 量结果决定系数 *R*<sup>2</sup>分别 为 0.978 7 和 0.989 2,斜 率 分 别 为 1.010 5 和 0.999 4,两力学传感器测



图 8 试验系统示意图 Fig. 8 Layout of experiment system
1. 压力传感器 2. 上顶盖
3. 螺栓 4. PVC 圆柱桶
5. 圆锥杆 6. 通孔 7. 嵌入式 力学传感器

量结果一致。这表明沙土和壤土可视为塑性材料, 当圆锥贯入时使得沙土和壤土产生塑性形变,由于 圆锥头底面直径为 12.83 mm,大于锥杆直径 (9.53 mm),因此压力传感器测量得到的圆锥阻力 中锥杆所受摩擦力影响很小,可忽略不计。



图 9 在沙土与壤土样本中两力学传感器测量结果 Fig. 9 Results of experiments in sand and loam samples (a) 样本 1 (b) 样本 2

图 11a 为圆锥贯入青贮玉米饲料中两传感器测量结果,从图中可以看出,在圆锥贯入饲料初始阶段两传感器测量结果相同,但随着圆锥贯入深度的增加,圆锥杆受饲料摩擦力作用面积逐渐增大,安装于



图 11 在青贮玉米饲料样本中两力学传感器测量结果 Fig. 11 Results of experiments in silage samples (a) 样本 3 (b) 样本 4

圆锥杆上端的压力传感器测量值逐渐大于嵌入式力 学传感器测量值。当圆锥从圆柱桶底面穿出后,圆 锥头不再受到阻力,嵌入式力学传感器测量值为零, 而压力传感器测量值稳定于110 N 左右,此时压力 传感器测量值即为圆锥杆所受饲料摩擦力值。增大 圆柱桶中饲料的密度,如图11b 所示,嵌入式力学传 感器与压力传感器测量值均明显增加,而压力传感 器测量结果中圆锥杆所受摩擦力也随之增大,当嵌 入式力学传感器测量值为零时,压力传感器测量值 稳定于280 N 左右。

从表2的统计结果可以看出两力学传感器测量

表 2 青贮玉米饲料样本测量结果统计分析

| 样本 | 材料      | 压力传感器测量 | 嵌入式力学传感器 | 锥杆所受摩擦力 | 锥杆所受摩擦力平均值占   |
|----|---------|---------|----------|---------|---------------|
| 序号 |         | 平均值/N   | 测量平均值/N  | 平均值/N   | 传感器测量平均值百分比/% |
| 3  | 青贮玉米饲料1 | 156.05  | 105.25   | 50.80   | 32.56         |
| 4  | 青贮玉米饲料2 | 361.39  | 238.34   | 123.05  | 34.05         |

平均值差异较大,两者之差即为锥杆所受饲料摩擦 力的平均值。该值占压力传感器测量平均值的百分 比分别为 32.56% 和 34.05%,表明青贮玉米饲料可 被视为弹性材料,当圆锥贯入时饲料仅发生弹性形 变,因此圆锥杆受饲料摩擦力影响显著。

### 3 结论

(1)设计了一种新型圆锥指数仪,将微型力学 传感器嵌入到圆锥杆下端,圆锥几何尺寸严格按照 ASABE标准设计。标定试验结果表明,设计的嵌入 式力学传感器结构设计合理,具有良好的性能指标。

(2) 对不同材料压实度进行实际测量结果表

明,在沙土和壤土中,嵌入式力学传感器和安装在圆 锥杆上端的压力传感器测量结果相同,证明了圆锥 指数仪在测量土壤压实度过程中,圆锥杆所受土壤 摩擦力作用可忽略不计。而在青贮玉米饲料压实度 测量中,圆锥杆受到饲料摩擦力影响显著,使得安装 在圆锥杆上端的压力传感器获取的饲料圆锥阻力值 存在较大误差。

(3)设计的新型圆锥指数仪可消除锥杆所受摩擦力的影响,精确获取土壤和饲料压实度信息,为拓展圆锥指数仪应用领域,对不同复杂弹-塑性材料压 实度测量提供了更为精确的测量手段。

診 考 文 献

- 1 Perumpral J V. Cone penetrometer application: a review [J]. Transaction of ASAE, 1987, 30(4): 946 ~952.
- 2 Sun Yurui, Schulze Lammers P, Ma Daokung. Evaluation of a combined penetrometer for simultaneous measurement of penetration resistance and soil water content[J]. Journal of Plant Nutrition and Soil Science, 2004, 167(6): 745 ~ 751.
- 3 Sun Yurui, Ma Daokung, Schulze Lammers P, et al. On-the-go measurement of soil water content and mechanical resistance by a combined horizontal penetrometer [J]. Soil and Tillage Research, 2006, 86(2): 209 ~ 217.
- 4 Fuerll C, Schemel H, Koeppen D. Principles for measuring density in silages [J]. Landtechnik, 2008, 63(2): 94~95.
- 5 Sun Y, Buescher W, Lin J, et al. An improved penetrometer technique for determining bale density [J]. Biosystem Engineering, 2010, 105(2): 273 ~ 277.
- 6 Muck R E, Savoie P, Holme B J S. Laboratory assessment of bunker silo density, part I: alfalfa and grass [J]. Applied Engineering in Agriculture, 2004,20(2): 157~164.
- 7 Savoie P, Muck R E, Holmes B J. Laboratory assessment of bunker silo density, part II: whole-plant corn [J]. Applied Engineering in Agriculture, 2004,20(2): 165 ~ 171.
- 8 Amours L D, Savoie P. Density profile of corn silage in bunker silos[J]. Canadian Biosystems Engineering, 2005, 47: 221 ~ 228.
- 9 孟繁佳,马道坤,孙宇瑞. 滚珠丝杠传动的土壤圆锥指数设计[J]. 农业机械学报,2009,40(5):52~55. Meng Fanjia, Ma Daokun, Sun Yurui. Soil cone penetrometer with ball screw transmission [J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(5):52~55. (in Chinese)
- 10 曾庆猛,孙宇瑞,马道坤.应用电流法测量土壤圆锥指数[J].农业机械学报,2006,37(9):61~63.
   Zeng Qingmeng, Sun Yurui, Ma Daokun. Measurement of soil cone index suing current method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(9):61~63. (in Chinese)
- 11 ASAE S313.3. Soil cone penetrometer [S]. 1999.
- 12 ASAE EP542. Procedures for using and reporting data obtained with the soil cone penetrometer [S]. 1999.
- 13 Armbruster K, Hertwig A, Kutzbach H D. An improved design of cone penetrometer [J]. Journal of Agricultural Engineering Research, 1990, 46: 219 ~ 222.
- 14 Adams B A, Topp G C. Frictional component of soil conepenetration resistance [J]. ASAE Paper, 98-1063.
- 15 Adams B A, St-Amour G, Topp G C. Evaluation of a piezoelectric load cell for use on cone penetrometers [J]. Journal of Agricultural Engineering Research, 2000, 76(2): 205 ~ 210.
- 16 李艳洁,刘翼晨,林剑辉,等.圆锥指数仪贯入沙土过程的三维离散元法模拟[J].农业机械学报,2012,43(7):63~68. Li Yanjie, Liu Yichen, Lin Jianhui, et al. 3D DEM simulations of the cone penetration tests in sandy soil[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012,43(7):63~68. (in Chinese)