DOI:10.6041/j.issn.1000-1298.2012.10.008

非匀速空间行星轮系宽窄行分插机构分析与优化*

孙 良 赵 匀 姚佳明 郑 建 俞高红 祝 宇 (浙江理工大学机械与自动控制学院,杭州 310018)

【摘要】 针对现有宽窄行分插机构存在斜取秧和大穴口问题,提出一种由椭圆锥齿轮-交错圆柱齿轮混合传动的空间行星轮系宽窄行分插机构。分析了椭圆锥齿轮的传动特性,建立了机构的运动学模型。通过分析插秧轨迹的横向线位移、横向插秧穴口边长与传动齿轮交错角的关系,得出椭圆锥齿轮-交错圆柱齿轮混合传动方式可以兼顾斜置式和齿轮交错传动式的小穴口、直取秧的优点。开发了宽窄行分插机构参数优化软件,进行了机构的运动特征分析,并通过人机交互方式优化了一组满足宽窄行插秧机的机构参数。利用仿真软件 ADAMS 实现了椭圆锥齿轮齿廓的设计,并结合三维建模软件进行了分插机构的仿真。加工了分插机构实物模型,进行了试验台测试,得出椭圆锥齿轮-交错圆柱齿轮混合传动分插机构可以满足水稻宽窄行插秧的要求。

关键词:插秧机 分插机构 宽窄行 椭圆锥齿轮 交错圆柱齿轮

中图分类号: S223.2⁺6 文献标识码: A 文章编号: 1000-1298(2012)10-0041-06

Analysis and Optimization of Wide – Narrow Distance Transplanting Mechanism with Spatial Planetary Gear Train of Variable Speed Transmission

Sun Liang Zhao Yun Yao Jiaming Zheng Jian Yu Gaohong Zhu Yu (School of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China)

Abstract

In order to solve the problems such as grasping seedling obliquely and shaping wider plant hole, a wide – narrow distance transplanting mechanism with spatial planetary gear train composed of elliptical bevel gears and crossed cylindrical gears was put forward. Kinematical model was established based on the transmission characteristics. Furthermore, the proposed mechanism was proved capable of taking the advantages, which known as grasping seedling more vertically and shaping narrower plant hole, by the analysis on relation among the lateral offsets, lateral plant hole of spatial planting trajectory and shaft angle. A optimization program about wide – narrow distance transplanting mechanism was written to research on the kinematics, and a set of optimal parameters meeting the working requirements of wide – narrow distance rice transplanter was obtained by the method of human – computer conversation afterward. Then configuration of elliptical bevel gear was achieved and virtual prototype test was performed by the software named ADAMS. Finally, a model machining of the transplanting mechanism as well as its testing was made, and concluding that the structural design and its parameters was suited to the requirements of wide – narrow distance rice transplanter.

Key words Rice transplanter, Transplanting mechanism, Wide – narrow distance, Elliptical bevel gear, Crossed cylindrical gear

通讯作者:赵匀,教授,博士生导师,主要从事农业机械设计、机构运动学与动力学优化研究, E-mail: zhaoyun@ zstu. edu. cn

收稿日期: 2012-01-18 修回日期: 2012-02-02

^{*}国家自然科学基金资助项目(51175073)、"十二五"国家科技支撑计划资助项目(2011BAD20B08)、浙江省自然科学基金资助项目 (LQ12E05016、Y1110362)和浙江省现代农业装备与实施产业创新团队基金资助项目(2009R5001)

作者简介:孙良,讲师,博士生,主要从事农业机械设计和机构数值分析研究, E-mail: liangsun@ zstu.edu.cn

引言

与传统等行距水稻插秧机相比,宽窄行插秧机 用于实现秧苗宽行与窄行间隔栽插。这种适当改变 秧苗行间距的方式,可增加秧苗行间通风、光照,从 而达到减少病害、抗倒伏和增加水稻产量的效 果^[1-2]。而宽窄行分插机构是插秧机实现宽窄行种 植的一个核心功能部件。

目前,国内的宽窄行分插主要有宽窄行布置 式、斜置式和齿轮交错传动式3类设计方案。宽 窄行布置式是根据宽行与窄行的行距要求对传统 分插机构进行宽窄行安装(如延吉插秧机制造有 限公司研制的 ZT-2040 型插秧机),由于改变了 传动插秧机分插机构之间等距离布置的模式,需 更改秧箱结构(秧盘尺寸)和移箱机构的横向行 程,而修改后机器又无法与传统育秧设备配套作 业。斜置式是在宽窄行布置式基础上提出的一种 改进形式,通过改变分插机构驱动箱结构,使联接 分插机构的输出轴与地面形成一定角度(由宽、窄 行距确定),实现传统分插机构的倾斜安装,从而 在不改变秧箱和移箱的前提下实现宽窄行作业 (如万向节式、单(双)轴锥齿轮式、内(外)交错齿 轮式等)^[3-4]。这类机构形成的轨迹倾斜度随宽 行与窄行比值的增大而增加,大斜度的秧爪轨迹, 在取秧时易出现伤秧和取苗不均匀现象。齿轮 交错传动式是在不改变分插机构驱动箱的前提 下,将分插机构中的齿轮设计成交错传动而形成 空间插秧轨迹^[5]。通过对机构的参数优化,获得 类似等行距分插机构的直取秧动作,但是这类机 构形成的插秧穴口随着秧爪横向线位移的增大 而迅速增大,不适合横向线位移较大的宽窄行插 秧作业。

因此,针对斜置式与齿轮交错传动式宽窄行分 插机构存在的问题,本文提出一种椭圆锥齿轮-交错 圆柱齿轮混合传动的空间行星轮系宽窄行分插机 构,可以兼顾斜置式的小穴口和齿轮交错传动式的 直取秧的特点。

1 宽窄行分插机构与插秧轨迹特点

1.1 宽窄行分插机构工作原理

图 1 为分插机构示意图。该机构由 7 个齿轮组 成,中间的 3 个齿轮(2、4 与 14)为斜齿圆柱齿轮, 外侧两对为椭圆锥齿轮(3、5 和 10、11),中心齿轮 2 (太阳轮)与机架固定,两侧的传动齿轮相对太阳轮 呈对称分布,与太阳轮交错啮合的是具有相同旋向 的斜齿轮 4、14,椭圆锥齿轮 3、10 分别与齿轮 4、14 固定联接在中间轴 8、9 上,固定在行星轴 6、13 上的 椭圆锥齿轮 5、11 分别与齿轮 8、9 相互啮合,而行星 轴的另一端固定联接栽植臂 7、12。工作时,分插机 构由中心轴 H 驱动行星架 1 作等速运转(牵连运 动),交错齿轮和椭圆锥齿轮相对行星架作空间不 等速运转(相对运动),在两种运动的结合下,通过 机构参数优化,栽植臂上的秧爪尖 D、D'可形成宽窄 行插秧所需的空间轨迹。

图1 分插机构示意图

 Fig. 1
 Structural sketch of transplanting mechanism

 1. 行星架(齿轮箱)
 2. 太阳轮(中心斜齿轮)
 3、10. 中间椭圆

 锥齿轮
 4、14. 中间斜齿轮
 5、11. 行星椭圆锥齿轮
 6、13. 行星

 轴
 7、12. 栽植臂
 8、9. 中间轴
 1

1.2 宽窄行插秧轨迹特征

为了在传统等行距插秧机上配置相应的分插机 构实现宽窄行插秧,则需改变传统平面插秧轨迹的 设计^[6-7]。因为传统插秧机具有相同的秧门间距, 如果实现宽窄行插秧,则机构秧爪的推秧点落在其 取秧点地面投影的左(右)前或左(右)后方。其中, 推秧点相对取秧点向左或向右的偏移量就是栽插宽 所需的横向线位移。设计过程中,为了获得足够的 秧爪横向线位移,取秧段轨迹和推秧段轨迹易出现 明显的倾斜问题,导致斜取秧和大穴口,影响插秧质 量。因此,在满足横向线位移的条件下,通过机构参 数优化和结构设计,减小取秧和推秧过程的轨迹倾 斜度,获得类似平面轨迹分插机构的直取秧动作和 小穴口(小于30 mm)是宽窄行分插机构轨迹设计的 关键性问题^[8]。

2 机构运动学模型

2.1 椭圆锥齿轮节曲线

为建立机构运动学模型,首先对椭圆锥齿轮进 行分析。椭圆锥齿轮既具有平面椭圆齿轮的不等速 传动特性,又具有锥齿轮空间传动特性。椭圆锥齿 轮副的运动相当于一对非圆节锥的纯滚动^[9~10],在 已知齿轮副传动比 *i*₁₂、偏心率 *e* 和锥距 *R* 的情况 下,可确定椭圆锥齿轮球面节曲线(图 2)。0 为齿轮锥顶,A、B 为球面椭圆的焦点,齿轮 1 以角速度 ω_1 绕 OA转动时,齿轮 2 以 $\omega_2 = i_{12}\omega_1$ 绕 OB转动,锥顶角 θ_1 、 θ_2 随着 \widehat{AP} 和 \widehat{BP} 变化。齿轮 1 的节曲线表达式为

$$\begin{cases} x_1 = R\sin\theta_1\cos\varphi_1\\ y_1 = R\sin\theta_1\sin\varphi_1 & (1)\\ z_1 = R\cos\theta_1 \end{cases}$$

$$\exists \Phi \quad \theta_1 = \arctan\left(\frac{\sin\delta}{i_{12} + \cos\delta}\right) \quad \delta = \theta_1 + \theta_2$$

$$\exists \Phi \quad \varphi_1 - - \pm \delta \times 1 \pm \delta \\ \delta - - \pm \delta \times 1 \pm \delta \\ \delta - - \pm \delta \times 1 \pm \delta \\ \delta - - \pm \delta \times 1 \pm \delta \\ \delta - - \pm \delta \times 1 \pm \delta \\ \delta - - \pm \delta \times 1 \pm \delta \\ \delta - - \delta \times 1 \pm \delta \\ \delta - - \delta \times 1 \pm \delta \\ \delta - - \delta \times 1 \pm \delta \\ \delta - - \delta \times 1 \pm \delta \\ \delta - - \delta \times 1 \pm \delta \\ \delta - - \delta \times 1 \\ \delta - -$$

其中
$$\varphi_2 = \arccos\left(\frac{1-e^2+e\cos\varphi_1-e^3\cos\varphi_1}{e+2e^2\cos\varphi_1+e^3}-\frac{1}{e}\right)$$

式中 φ_2 ——齿轮 2 转角

Fig. 2 Pitch curve of elliptical bevel gear

2.2 机构运动学模型建立

为了分析方便,将分析所需的相关参数列于 表1。

表 1 符合说明 Tab.1 Specification of symbols

符号	含义	符号	含义
α	初始安装角	η	行星轮相对行星架转角
arphi	行星架转角	a	交错齿轮中心距
β	斜齿轮螺旋角	L_1	行星轴长度
γ	行星轮的偏置角	L_2	行星轴到秧爪距离
μ	栽植臂与行星架的夹角	L_3	秧爪长度

由于太阳轮两侧的传动齿轮呈对称分布,故以 其中一侧为研究对象,进行运动学建模。相关参数 与坐标设定如图 3 所示。参考系与太阳轮固定,原 点 0 为其转动中心,分插机构以角速度 φ 顺时针转 动(规定逆时针角位移为正)。为了便于分析,令齿

- Fig. 3 Reference frame and parameters of transplanting mechanism
 - (a) 机构初始位置正视图 (b) 机构初始位置侧视图1. 行星架 2. 太阳轮 3、4. 中间轮 5. 行星轮

轮 3 和齿轮 4 的端面重合, *O* 点位于齿轮 2 的前端 面,转动中心 *A*、*B* 点分别位于椭圆锥齿轮 3、5 的大 端面。则锥顶 *C* 位置可以表示为

$$\boldsymbol{P}_{c} = \boldsymbol{E}_{1}\boldsymbol{E}_{2} = \begin{bmatrix} P_{c11} & P_{c12} & P_{c13} & P_{cx} \\ P_{c21} & P_{c22} & P_{c23} & P_{cy} \\ P_{c31} & P_{c32} & P_{c23} & P_{cz} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(3)
$$\ddagger \ \boldsymbol{E}_{1} = \begin{bmatrix} \cos(\alpha + \varphi) & -\sin(\alpha + \varphi) & 0 & 0 \\ \sin(\alpha + \varphi) & \cos(\alpha + \varphi) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\boldsymbol{E}_{2} = \begin{bmatrix} 1 & 0 & 0 & 2r \\ 0 & \cos(2\beta) & -\sin(2\beta) & 0 \\ 0 & \sin(2\beta) & \cos(2\beta) & R \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

秧爪尖点 D 位置表示为

$$\boldsymbol{P}_{D} = \boldsymbol{P}_{C} \boldsymbol{E}_{3} \boldsymbol{E}_{4} \boldsymbol{E}_{5} \boldsymbol{E}_{6} = \begin{bmatrix} \boldsymbol{P}_{D11} & \boldsymbol{P}_{D12} & \boldsymbol{P}_{D13} & \boldsymbol{P}_{Dx} \\ \boldsymbol{P}_{D21} & \boldsymbol{P}_{D22} & \boldsymbol{P}_{D23} & \boldsymbol{P}_{Dy} \\ \boldsymbol{P}_{D31} & \boldsymbol{P}_{D32} & \boldsymbol{P}_{D23} & \boldsymbol{P}_{Dz} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{1} \end{bmatrix}$$
(4)

其中
$$E_3 = \begin{bmatrix} \cos\gamma & -\sin\gamma & 0 & 0\\ \sin\gamma & \cos\gamma & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $\eta =$

$$E_{4} = \begin{bmatrix} \cos\delta & \sin\delta & 0 & 0 \\ -\sin\delta & \cos\delta & 0 & 0 \\ 0 & 0 & 1 & -R \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$E_{5} = \begin{bmatrix} \cos\eta & -\sin\eta & 0 & 0 \\ \sin\eta & \cos\eta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$E_{6} = \begin{bmatrix} \cos\mu & -\sin\mu & 0 & L_{1} \\ \sin\mu & \cos\mu & 0 & L_{2} \\ 0 & 0 & 1 & -L_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$2\tan\left(\frac{1-e}{1+e}\tan\left(\frac{\gamma-\varphi}{2}\right)\right) - 2\pi \quad (\varphi \le 180^{\circ})$$
$$2\tan\left(\frac{1-e}{1+e}\tan\left(\frac{\gamma-\varphi}{2}\right)\right) \qquad (\varphi > 180^{\circ})$$

式中 E₃——行星轮的偏置矩阵

*E*₄——行星齿轮相对中间齿轮的交错角和 锥距

 E_5 ——行星齿轮相对行星架的角度变化矩阵 E_6 ——栽植臂与行星架的夹角和及秧爪尖点

D 与行星轮转动中心 B 的相对位置

P_{Dij}(*i*,*j* = 1, 2, 3) — 秧爪相对在参考系 *Oxyz*中的方向

P_{Dx}、P_{Dy}、P_{Dz}—D点在参考系 Oxyz 中的位置 分插机构上其他部位在参考系中的位置和姿态 可以用同样的方法得到。另外,对获取的位移表达 式求时间的导数,可以得到相应的速度和加速度,由 于篇幅所限不再展开叙述。

3 机构轨迹分析与参数优化

3.1 机构轨迹分析

因螺旋角 β 和锥齿轮轴交错角 δ 是影响轨迹横 向插秧穴口边长 S_1 、轨迹横向线位移 S_2 以及取秧段 轨迹横向偏移量 S_3 的主要因素。所以在其他机构 参数不变的情况下,研究 β 和 δ 对插秧轨迹的影响。 以秧爪横向线位移 S_2 为 50 mm 的插秧要求(即宽行 400 mm,窄行 200 mm)为分析前提,考虑到 δ 过小, 使轨迹横向线位移不足; δ 过大,使取秧段轨迹产生 大斜度的取秧动作,故初步设定 δ 为 4°~12°。

图 4 为不同 δ 时,螺旋角对横向插秧穴口边长、 横向线位移、取秧段轨横向偏移量影响的关系曲线。 其中, $\beta > 0$ 表示太阳轮螺旋角旋向为左旋, β 和横向 插秧穴口边长 S_1 基本呈线性关系, δ 对穴口影响较 小,而当 – 2° < β < 6°时,横向插秧穴口边长不超过 30 mm(图 4a)。横向线位移 S_2 为正,轨迹下端偏离 分插机构齿轮箱;反之偏向齿轮箱。本文以后者 (轨迹下端偏向齿轮箱)为研究对象,如果形成 -50 mm 的横向线位移,则β要求大于3°,但β过大 将使横向插秧穴口边长超过允许范围30 mm,所以 取3° <β <6°,此时的插秧穴口边长在2~30 mm 之 间,而齿轮交错传动式宽窄行分插机构,达到50 mm 横向线位移时,横向插秧穴口边长已经达到28 mm, 已接近穴口边长允许的极限(图4b)。在不同的δ 下,当3° <β <6°时,取秧段轨迹横向偏移量 S_3 影响 甚微(最大变化值0.435 mm),当δ=12°、β=3°时, 取秧段轨迹偏移量 S_3 达到给定范围的最大值 3.4 mm(图4c)。而对于万向节式等宽窄行分插机 构(轨迹倾斜度为11.5°~12.5°),达到-50 mm 的 横向线位移,其取秧段轨迹的偏移量为4.1 mm。

图 4 不同轴交角下的螺旋角与横向插秧穴口边长、轨迹 横向线位移、取秧段轨迹横向偏移量的关系曲线 Fig. 4 Relationship between β and S₁, S₂, S₃ in different shaft angles

综合上述分析,对本文提出的椭圆锥齿轮-交错 圆柱混合传动的空间行星轮系宽窄行分插机构,进 行参数优化可以获得比斜置式宽窄行分插机构更优 的取秧动作,比齿轮交错传动式宽窄行分插机构更 小的插秧穴口。究其原因是宽窄行分插机构中的交 错圆柱齿轮传动具有齿轮交错传动式的取秧特征, 而椭圆锥齿轮传动具有斜置式小穴口的特征。从理 论上看,这种机构可以满足宽行距较大的宽窄行插 秧作业。

3.2 机构参数优化

为了使机构满足宽窄行插秧的要求,需对其进

行参数优化,以获得合理的宽窄行工作轨迹和姿态^[11-12],具体的优化目标如下:

(1)为使分插机构同时适合插大苗和小苗,并 保证插大苗时不出现"搭桥"现象,轨迹必须达到一 定的高度,260 mm 以上。

(2) 插秧后回程轨迹要有向上的趋势, 避免过 早前倾, 以免秧针碰伤已插的秧苗。

(3) 秧爪取秧时与水平面的夹角(取秧角) 应在 5°~25°之间, 而在推秧时与水平面的夹角(推秧 角) 应在 60°~80°之间。

(4)轨迹的穴口边长(前进方向插秧穴口边长、 横向插秧穴口边长 S₁)要小于 30 mm,太大会导致所 插秧苗倒伏或漂秧。

(5)两栽植臂在插秧过程中不能发生运动干涉。

(6)在回程之前完成推秧动作。

(7) 秧爪的支撑部位不能与秧门干涉。

(8)在 xOy 平面上,推秧角与取秧角的角度差 为秧箱的倾斜角,在 yOz 平面上,秧爪的偏转角度要 求小于 10°。

(9)取秧量要求为 1.8 cm 左右,并要求 xOy 平面上的取秧轨迹几乎与秧箱垂直,在 yOz 平面上的取秧轨迹偏移量为 3 mm 左右。

(10)取秧到推秧时刻轨迹横向线位移 S₂的绝 对值为 50 mm。

根据上述 9 个优化目标,以延吉春苗牌等行距高速插秧机的秧门尺寸为设计条件,编写基于运动 学模型的分插机构辅助优化软件。图 5 为软件界面,并通过人机交互的方式优化影响轨迹形状和姿态的相关参数,并获得如表 2 所示的机构参数。在这组参数下分插机构轨迹的横向插秧穴口边长 S_1 为 0.052 mm,秧爪横向线位移 S_2 为 – 50.09 mm,取秧段轨迹横向偏移量 S_3 为 3.18 mm,在 xOy 平面上的取秧角为 12.345°, 推秧角为 70.102°, 差角为57.757°, 推秧时秧爪在 yOz 平面上的偏转角为5.36°。

图 5 机构优化软件界面 Fig. 5 Interface of software for parameters optimization

表 2 优化后数据

Tab. 2 Optimization data

参数	e	a∕mm	δ ∕(°)	<i>R</i> /mm	β ∕(°)	α ∕(°)	γ∕(°)	$\mu/(\circ)$
数值	0.251	42	10.5	225	3.1	56	0	- 7. 9
参数	L_1	/mm	L_2/mm	L_3/mm	$S_1/2$	mm S ₂	/mm	S_3/mm
数值		85	64	155	0.0	52 - :	50.09	3.18

4 仿真与试验

4.1 椭圆锥齿轮设计

根据上述的优化参数,可以确定椭圆锥齿轮的 球面节曲线。考虑到齿轮啮合过程,轮齿有足够的 强度,令齿轮模数大于2mm,再根据节曲线的长度 和齿数,计算出椭圆锥齿轮模数。为了实现宽窄行 分插机构的仿真和齿轮的齿廓加工,利用仿真软件 ADAMS的命令流语言进行椭圆锥齿轮齿廓设计,借 助该设计程序可以快速生成椭圆锥齿实体模型。 图 6 为椭圆锥齿轮设计交互式界面及齿轮模型。将 3.2 节优化后的齿轮参数:偏心率、交错角以及锥距 输入对话框,进行锥齿轮节曲线弧长、模数计算。当 模数小于2mm,界面将提示齿轮设计不符合要求, 需修改输入参数。模数符合要求后,程序将利用刀 具生成命令获取范成刀具,由齿轮切割命令完成齿 轮实体虚拟加工。

图 6 椭圆锥齿齿廓设计界面与齿轮实体

Fig. 6 Interface of bevel tooth profile design and solid model

4.2 仿真分析

利用三维设计软件建立分插机构的实体模型后导入 ADAMS,并结合椭圆锥齿轮设计软件的齿轮模型,完成分插机构仿真模型的构建,并对机构轨迹, 秧爪速度进行分析。

图 7 为理论轨迹与仿真轨迹对比,图中 h 为插 秧深度。从图中可以看出,宽窄行分插机构的理论 计算轨迹与仿真轨迹一致,另外由于该机构在保证 轨迹横向线位移 S_2 为 – 50.09 mm 的前提下,形成的 横向插秧穴口边长 S_1 为 0.052 mm,有利于保证秧苗 的直立性,这与图 7b 和图 7d 中的尖锐轨迹形状相 符。

图 8 是宽窄行分插机构仿真和理论计算获得的秧

simulation trajectory

(a) xOy 平面上的理论秧爪轨迹
(b) yOz 平面上的理论秧爪轨迹
(c) xOy 平面上的仿真秧爪轨迹
(d) yOz 平面上的仿真秧爪轨迹
1. 取秧开始点
2. 取秧结束点
3. 秧门
4. 横向穴口

数据变化一致。其中,仿真曲线中的数值波动是由于 椭圆锥齿轮齿廓面是由一些小片体组合而成,并不是 理想的球面渐开面,而且模型在接触仿真时,齿面的接 触力随着齿廓面的穿透深度而变化等原因引起的。

4.3 试验验证

为进一步验证机构参数,本文加工分插机构实物 模型,并在插秧机试验台上,利用高速摄像技术从分插 机构的正面(xOy 平面)和侧面(yOz 平面)两个方向拍 摄秧爪的运动姿态和轨迹,再利用图像分析软件 Blaster's MAS 处理秧爪的运动轨迹。从图 9 中可以清 晰地看到椭圆锥齿轮-交错齿轮传动宽窄行分插机构 的实际插秧轨迹与理论计算和仿真获得的插秧轨迹基 本一致。

图 9 试验轨迹 Fig. 9 Testing trajectory (a) 正向视图 (b) 侧向视图

5 结论

(1)根据水稻宽窄行插秧行距要求,提出了一种椭圆锥齿轮-交错齿轮传动的行星轮系宽窄行分插机构, 建立了机构轨迹模型,开发了分插机构辅助分析软件。

(2)从横向插秧穴口边长、取秧段轨迹的偏移量、 轨迹横向线位移等方面对机构轨迹进行了分析,得出 该机构在轨迹表达能力比斜置式和交错齿轮传动式宽 窄行分插机构更优。

(3)完成了基于 ADAMS 的椭圆锥齿轮设计软件 设计,可快速实现椭圆锥齿轮实体设计,便于齿轮加 工。

(4)对机构运动轨迹进行了仿真和试验验证,得出 椭圆锥齿轮-交错齿轮传动的行星轮系宽窄行分插机 构适合于高速宽窄行插秧机作业,而且轨迹下端偏向 分插机构一侧的形状特征,可用于解决乘坐式插秧机 因浮板壅泥而推倒外侧已栽插秧苗的问题。

参考文献

1 敖和军, 方远祥,熊昌明,等. 株行距配置对超级杂交稻产量及群体光能利用的影响[J]. 作物研究, 2008, 22(4): 263~269.

Ao Hejun, Fang Yuanxiang, Xiong Changming, et al. Effects of plant-row spacing on yield and radiation utilization efficiency in super hybrid rice [J]. Crop Research, 2008,22(4):263 ~ 269. (in Chinese)

46

- 7 赵东,张晓辉,蔡冬梅,等.基于弥雾机风机参数优化的雾滴穿透性和沉积性研究[J]. 农业机械学报,2005,36(7):44~49. Zhao Dong, Zhang Xiaohui, Cai Dongmei, et al. Study on penetrability and deposited property of droplets by parametric optimization of a mist-sprayer fan[J]. Transactions of the Chinese Society for Agricultural Machinery,2005,36(7):44~49. (in Chinese)
- 8 陆军,李萍萍,贾卫东,等. 温室轴流风送药雾标靶沉积试验[J]. 农业机械学报,2009,40(12):88~92.
 Lu Jun, Li Pingping, Jia Weidong, et al. Experiment of axial-flow air-carried toward-target pesticide deposition in greenhouse [J]. Transactions of the Chinese Society for Agricultural Machinery,2009,40(12):88~92. (in Chinese)
- 9 邱白晶,沙俊炎,汤伯敏,等.密闭空间雾滴沉积状态参数的显微图像解析[J].农业机械学报,2008,39(2):55~58,111. Qiu Baijing, Sha Junyan, Tang Bomin, et al. Analysis of droplets deposition parameters based on micrograph in airtight space [J]. Transactions of the Chinese Society for Agricultural Machinery,2008,39(2):55~58,111. (in Chinese)
- 10 杨学军,严荷荣,徐赛章,等. 植保机械的研究现状及发展趋势[J]. 农业机械学报,2002,33(6):129~131,137.
 Yang Xuejun, Yan Herong, Xu Saizhang, et al. Current situation and development trend of equipment for crop protection
 [J]. Transactions of the Chinese Society for Agricultural Machinery,2002,33(6):129~131,137. (in Chinese)
- 11 GB/T 24861—2009/ISO 22866:2005 植物保护机械喷雾飘移的田间测量方法[S].2009.
- 12 GB/T 24861.1-2009/ISO 22369-1:2006 植物保护机械喷雾飘移量分级 第一部分:分级[S].2009.
- 13 陈志刚,王玉光,杜彦生,等. 精确对靶喷雾施药的靶标微波探测试验[J]. 排灌机械工程学报,2010,28(4):364~368.
 Chen Zhigang, Wang Yuguang, Du Yansheng, et al. Microwave target detecting experiment for precise pesticide spraying
 [J]. Journal of Drainage and Irrigation Machinery Engineering, 2010,28(4):364~368. (in Chinese)
- 14 贾卫东,李成,王贞涛. 高沉积静电喷雾装置试验研究[J]. 排灌机械工程学报, 2012, 30(2): 244~248. Jia Weidong, Li Cheng, Wang Zhentao. Experimental study on electrostatic spraying device with better deposition [J]. Journal of Drainage and Irrigation Machinery Engineering, 2012, 30(2): 244~248. (in Chinese)

(上接第46页)

- 2 童淑媛,杜震宇. 宽窄行种植对水稻生长发育及产量的影响[J]. 黑龙江农业科学,2011(3):30~31. Tong Shuyuan, Du Zhenyu. Effects of wide - narrow row spaceing cultivation on growth and yield of rice[J]. Heilongjiang Agricultural Sciences, 2011(3):30~31. (in Chinese)
- 3 浙江理工大学.万向节驱动倾斜式宽窄行插秧机分插机构:中国,ZL201010143779.4[P].2010-08-04.
- 4 东北农业大学. 双轴锥齿轮传动斜置式宽窄行插秧机分插机构:中国,ZL201010500747.5[P]. 2011-05-04.
- 5 浙江理工大学. 行星轮轴交错的椭圆斜齿轮传动分插机构:中国, ZL201010193683.9 [P]. 2010-10-20.
- 6 武传宇,赵匀,陈建能.水稻插秧机分插机构人机交互可视化优化设计[J].农业机械学报,2008,39(1):46~49. Wu Chuanyu, Zhao Yun, Chen Jianneng. Automatic search of pareto solutions of multi-objective for rotary transplanting mechanism kinematics[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008,39(1):46~49. (in Chinese)
- 7 俞高红,孙良,赵匀. 混合齿轮行星系分插机构的人机交互与参数优化[J]. 农业机械学报,2008,39(2):47~50. Yu Gaohong, Sun Liang, Zhao Yun. Parameters optimization based on human-computer conversation of transplanting mechanism with planetary spur gears and elliptical gears[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008,39(2):47~50. (in Chinese)
- 8 陈建能. 椭圆齿轮行星系分插机构的动力性能分析、参数优化及实验验证[D]. 杭州:浙江大学,2004. Chen Jianneng. Experiment test, parameter optimization and dynamics analysis of transplanting mechanism with planetary elliptical gears[D]. Hangzhou: Zhejiang University, 2004. (in Chinese)
- 9 Figliolini G, Angeles J. Algorithms for involute and octoidal bevel-gear generation [J]. ASME Journal of Mechanical Design, 2005,127(4): 664 ~ 672.
- 10 Figliolini G, Angeles J. Synthesis of the base curves for n-lobed elliptical gears [J]. ASME Journal of Mechanical Design, 2011,133(3):997 ~ 1005.
- 11 赵匀,赵雄,张玮炜,等.水稻插秧机现代设计理论与方法[J].农业机械学报,2011,42(3):65~68. Zhao Yun, Zhao Xiong, Zhang Weiwei, et al. Modern design theory and method of rice transplanter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011,42(3):65~68. (in Chinese)
- 12 俞高红,马成稳,孙良,等. 插秧机后插旋转式宽窄行分插机构设计与优化[J]. 农业机械学报,2012,43(8):50~55,65. Yu Gaohong, Ma Chengwen, Sun Liang, et al. Design and optimization of backward rotary transplanting mechanism in wide – narrow row planting[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012,43(8):50~55,65. (in Chinese)