焊点布局的结构多目标拓扑优化设计*

周泽斌1 斋藤和弘2 杨建国1

(1. 东华大学机械工程学院, 上海 201620; 2. 密歇根大学机械系, 安娜堡 48105)

【摘要】 针对结构优化设计中先分解后组合的重复优化问题,提出一种焊点布局的结构多目标拓扑优化方法。在连续设计域中,给定载荷和约束的情况下,同时优化整个结构的拓扑空间和几何造型,并决定子结构间的连接位置和布局形态。通过有限元分析和基于几何学交叉过程的多目标遗传算法得到 Pareto 解集,可根据不同需求确定权重,选择最优方案。

关键词:面向制造设计 焊点布局 拓扑优化 多目标遗传算法 中图分类号:U463.32;TP182 文献标识码:A 文章编号:1000-1298(2011)08-0189-06

Multi-objective Structural Topology Optimization for Spot-welded Layout

Zhou Zebin¹ Saitou Kazuhiro² Yang Jianguo¹

College of Mechanical Engineering, Donghua University, Shanghai 201620, China
 Department of Mechanical Engineering, University of Michigan, Ann Arbor 48105, USA)

Abstract

To solve the two-step process optimization problem, a method for synthesizing multi-objective structural topology optimization based on spot-welded layout was presented. Given an extended design domain with boundary and loading condition, the topology and geometry of an entire structure and the location and configuration of joints was optimized. A multi-objective genetic algorithm coupled with FEM analyses was used to obtain Pareto optimal solutions, the decision could be made for different demands.

Key words Design for manufacture, Spot-welded, Topology optimization, Multi-objective genetic algorithm

引言

结构拓扑优化可在工程结构设计的初始阶段为 设计者提供一个结构布局最优方案的概念性设计, 一直是结构优化领域研究的热点和难点。在现实中 的工程结构往往由各种零件或子结构构成,如汽车 车身焊接结构等。如何决定这些子结构在整个结构 中的几何形状或空间拓扑位置的设计,成了国内外 学者研究的新动向。早期研究者曾尝试在预定义的 非连续设计域中对各子结构进行拓扑优化和形状优 化^[1-3]。首先划定各自子设计域,然后在子设计域 内进行各自优化。然而,这种优化过程不能保证整 个连续域的全局优化。特别在组合成整体结构时, 常会发生各优化后的子结构之间不能组合,或者发 生重叠优化问题,这样的优化,反而影响优化后整体 结构的性能。

针对这些问题,本文提出一种焊点布局的多目 标拓扑优化方法。与传统优化方法不同,这种方法 摒弃了分二步(先分解,后组合)的重叠优化过程, 而是直接从几何特征出发,在给定边界条件和加载 情况下,同时优化整个连续结构的拓扑空间和几何 造型,并决定各子结构间连接的位置和布局形态,同

收稿日期:2010-12-02 修回日期:2011-01-24

^{*} 国家自然科学基金资助项目(50975046)和国家高技术研究发展计划(863 计划)资助项目(2008AA04Z123) 作者简介:周泽斌,博士生,主要从事智能算法与结构优化设计研究,E-mail: zebinus@ gmail.com 通讯作者:杨建国,教授,博士生导师,主要从事智能算法及 DFX 研究,E-mail: JGyangm@ gmail.com

时从整个结构性能的多方面来考虑,如刚度、轻量 化、制造成本等。作为课题组前期研究工作^[4-7]的 延伸,本文主要改进原先仅适用于梁结构的局 限^[6],同时省去修补模型带来的繁琐问题,更加精 确计算结构总质量^[7],通过 Matlab 编程,使设计过 程更具有柔性。

整个优化设计过程为:在一个连续设计域中,将 设计域离散成有限元单元,使每个间隔基本结构单 元相邻的单元设计成薄长条。通过基本单元中是否 存在结构材料来决定子结构间的拓扑关系,在连接 单元中是否存在焊接材料来决定焊点的布局形态。 运用有限元分析和基于几何学交叉^[8]的多目标遗 传算法得到 Pareto 解集,展示结构刚度、总质量、子 结构的制造问题和焊点数量多目标函数的权衡过 程。

1 数学模型

基于基结构的离散拓扑优化一般由基拓扑图表 表示为

 $G_g = (V_g, E_g)$

式中 Vg-----点集合,子结构单元的集合

E_g——边集合,子结构单元的交集(即潜在 连接单元)

类似推理,结构拓扑形式用初始拓扑图表表达成 G_的子集为

$$G_{a} = (V_{a}, E_{a})$$

其中 $V_o \subseteq V_g$ $E_o \subseteq E_g$

式中 V。——结构主有限元单元的集合

E。——主连接有限元单元的集合

整个数学模型的流程如图1所示。具体实现步骤如下:

(1)在连续设计域中,给定约束条件和加载情况下(图1a),用网格将设计域离散成有限元单元, 使每个间隔正方形的单元为薄长条(图1b),其中大 正方形表示结构主有限元单元,长方形为主连接有 限元单元,小正方形表示对角连接有限元单元。基 于离散变量的拓扑优化算法中,结构主有限元单元 中只有两种材料分布情况,即存在结构材料或不存 在结构材料,没有中间状态,这点与连续拓扑优化不 同。类似的,主连接有限元单元中存在3种形式,即 存在结构材料、焊接材料或者什么都不存在。

(2)在图像映射基础上,建立基拓扑图表 G_o = (V_o, E_o)(图 1c),边 E_o中不包括对角连接有限元单元,因为在 Matlab 中,对角连接有限元单元由主 连接有限元单元的材料分布来决定。

(3) 通过优化算法得到结果拓扑图表(图 1d)

G = (V, E, J),图1d中被框起来的顶点集合是优化 后得到的组件,虚线部分的顶点集合是优化工程中 删掉的部分。如不满足约束条件,将修改G重复再 优化,直到满足条件。

(4) 在优化后的拓扑空间中,建立材料分布情况,最后构建成与 G 对应的有限元模型(图 1e)。如 黑色长方形连接有限元单元中表示存在焊接材料。

图 1 数学模型流程

Fig. 1 Mathematical model

(a)连续设计域(b)离散设计域(c)基拓扑图表(d)结果拓扑图表(e)优化后的子结构布局

1.1 设计变量

为了详细说明结果拓扑图表 G = (V, E, J) 对应的有限元模型,引入 x 和 y 设计变量。矢量 x 用 来表示每个结构主有限元单元中的结构材料分布情况

 $\mathbf{x} = (x_1, x_2, \cdots, x_i, \cdots, x_{n-2}, x_{n-1})$ (n = |V_o|) (1) 其中

 $x_{i} = \begin{cases} 1 & (節 i 结构主有限单元中存在结构材料) \\ 0 & (其他) \end{cases}$

因此,G中的点集合 V可以写成

$$V = \{ x_i \in V_o \, | \, x_i = 1 \}$$
(2)

如图 1d 所示, 被圈起来的顶点为 $x_i = 1$ 。

矢量 y 用来表示主连接有限元单元中结构材料 和焊接材料分布情况

$$\mathbf{y} = (y_1, y_2, \dots, y_i, \dots, y_{m-2}, y_{m-1}) \quad (m = |E_o|)$$
(3)

 $y_i = \begin{cases} 1 & (第 i 主连接有限单元中存在结构材料) \\ 0 & (第 i 主连接有限单元中存在焊接材料) \\ 因此,$ *G*中的边集合*E*和*J*可以写成

$$E = \{ y_i \in E_o \, | \, y_i = 1 \}$$
(4)

$$J = \{ y_i \in E_o \, | \, y_i = 0 \}$$
 (5)

如图 1d 所示,用实线表示的边为 $y_i = 1$,用虚线表示 的边为 $y_i = 0$ 。对角连接有限元单元(图 1b 中的小 正方形)在 Matlab 中由主连接有限元单元的 y 决 定。

1.2 约束条件

为避免不合理的拓扑结构(图 2),用 x 和 y 表示的结构拓扑形式必须满足以下约束:

约束1:每个有限元单元(结构主有限元单元和 主连接有限元单元)至少和另外一个有限元单元相 连接。

这样第1个约束条件可以表达为

IS_CONNECTED($V(\mathbf{x}), E(\mathbf{y}) \cup J(\mathbf{y})$) = OK (6) 式中 IS_CONNECTED(G) — 检查 G 是否连接的 函数,如果返回是

OK 则表明连接

V(*x*) — *x* 对应的点集合

E(y)——y 对应的主连接有限元单元边集合 J(y)——y 对应的对角连接有限元单元边集

合

约束2:接触点(即边界点、受载点、位移点)至 少和一个主有限元单元相连接。

第2个约束条件可以表达为

$$\left(\prod_{i=1}^{N_B}\sum_{j\in S_{B_i}} x_j\right) \left(\prod_{i=1}^{N_L}\sum_{j\in S_{L_i}} x_j\right) \left(\prod_{i=1}^{N_D}\sum_{j\in S_{D_i}} x_j\right) \neq 0$$
(7)

- 式中 N_B——边界条件个数
 - N_L——加载条件个数
 - N_D——位移个数
 - *S_{Bi}*——第*i*个主结构有限元单元在边界接触 点的指数集
 - *S_{Li}*——第*i*个主结构有限元单元在加载接触 点的指数集
 - *S_{pi}*——第*i*个主结构有限元单元在位移接触 点的指数集

约束3:出现增加焊接有限元单元,但不能改进 整个结构整体性能的不合适拓扑结构,将在优化候 选过程中去除。如图3所示的孤立焊接点和多余焊 接点。

1.3 目标函数

基于焊点布局的多目标拓扑结构优化设计可以 通过以下4个评价标准来衡量:①整体结构的刚度。 ②结构的总质量。③结构中连接有限单元的总长(即 焊点的数量)。④结构中单一子结构的制造成本。

结构的刚度与柔度成反比,刚度*f*_{stiffness}求解问题 就可以转成求柔度问题。结构柔度为

 $f_{\text{compliance}} = \text{COMPLIANCE}(x, y)$ (8) 式中 COMPLIANCE——有限元分析后返回整个柔 度的函数

结构的总质量可以用结构材料和焊接材料的质 量总和来衡量,即

$$f_{weight} = \rho_s(s_s | V(\mathbf{x}) | + s_j | E(\mathbf{y}) | + s_d n_s) + \rho_w(s_j | J(\mathbf{y}) | + s_d n_d)$$
(9)
式中 ρ_s —结构有限元单元密度

ρ.----焊接有限元单元密度

s,——结构有限元单元面积

s_j——主焊接有限元单元面积

s_d——对角焊接有限元单元面积

n_s——对角焊接单元中结构材料个数

n_d——对角焊接单元中焊接材料个数

实际情况下,子结构间连接问题是个很复杂的 过程,要考虑的因素很多。本文仅考虑了二维简单 的车身设计问题,假设各个子结构(薄板金件)之间 是由点焊连接而成的,为计算方便,将焊接成本问题 简化成对应的点焊数量问题。Matlab 中的焊点的大 小和焊点之间的距离等主要参数所用数值是根据经 验公式得来的。结构焊接成本可由结构中连接单元 的总长来表示,即

$$f_{\text{weld}} = \{ \boldsymbol{L}_i | J(\boldsymbol{y}) | + \boldsymbol{L}_d \boldsymbol{n}_d \}$$
(10)

式中 L_j——主焊接有限元单元的长度向量

L_d——对角焊接有限元单元的长度向量

假设文中的子结构(车身各单元)是由薄金属 板制成的,这样可制造性可由制造成本(主要由冲 压模和下料加工)来反映,即

$$f_{\text{manufacturability}} = \sum_{i \in |V|} D_i$$
 (11)

式中 D_i——第 i 子结构的制造成本

在研究中,对于计算每个子结构的制造成本是

根据文献[9]中的经验公式在 Matlab 中计算,这里 不再详细解释。

综合而得,整个结构多目标拓扑优化问题可以 归纳为求解多目标函数的 Pareto 解集

$$\begin{cases} \min f_{\text{compliance}}, f_{\text{weight}}, f_{\text{weld}}, f_{\text{manufacturability}} \\ \text{subject to} \\ \text{IS_CONNECTED}(V(\boldsymbol{x}), E(\boldsymbol{y}) \cup J(\boldsymbol{y})) = \text{OK} \\ \left(\prod_{i=1}^{N_B} \sum_{j \in S_{B_i}} x_j\right) \left(\prod_{i=1}^{N_L} \sum_{j \in S_{L_i}} x_j\right) \left(\prod_{i=1}^{N_D} \sum_{j \in S_{D_i}} x_j\right) \neq 0 \\ (\boldsymbol{x} \in \{0, 1\}^{+V_o}, \boldsymbol{y} \in \{0, 1\}^{+E_o}) \end{cases}$$
(12)

2 优化算法

一般来说,多目标优化问题的解不是一个,而是 一组,即 Pareto 解集。Pareto 最优概念是建立在集 合论基础上对目标解的一种向量评估模式,在不能 进一步优化某个或多个目标函数的同时,保证其他 目标函数不劣化。

本文所涉及的是多目标、离散设计变量和几何 学交叉的问题,因此,在 Pareto 最优概念的多目标遗 传算法 NSGA II (non-dominated sorting genetic algorithm II)^[10-11]的基础上作进一步的改进。图 4 为结构多目标优化的流程图。

optimization procedure

在多目标遗传算法优化过程中,交叉过程是由 父代基因经过交换产生子代基因。与以往研究的图 表为基础的交叉过程^[3]不同,本文是基于几何学交 叉^[5]方法来解决优化过程中的交叉过程。

3 实例分析

为了验证所提方法的有效性,本文通过有限元 分析和运行 Matlab 编写的算法对简化的汽车底盘 支架实例进行分析。多目标遗传算法的参数如表1 所示。

表1 多目标遗传算法参数

Tab. 1	Parameters	for	NSGA
			110 011

参数	数值
最大种群代数	80
种群数量	1 500
替换率	0. 50
交叉率	0. 88
变异率	0.04

在有限元分析过程中,结构单元和焊接单元的 材料属性如表2所示。为进一步区分结构单元和焊 接单元,将焊接单元的弹性模量设置成结构单元的 2倍,焊接单元的密度为结构单元的0.4倍。

表 2 有限元分析中结构单元和焊接单元材料属性 Tab. 2 Material properties of structures and welds for finite element analyses

材料	弹性模量/GPa	泊松比	密度/kg·m ⁻³
结构单元	7 800	0.3	2 070
焊接单元	15 600	0.3	828

在实例中,将多重载荷作用下的简化汽车底盘 支架作为设计域,如图 5 所示,从上往下俯视看,长 度为3 000 mm,宽度为 1 600 mm。在模拟中,加载情 况分别为 $P_1 = 1 000 \text{ N}, P_2 = 1 000 \text{ N}$ 。利用载荷点的 位移变化来计算结构的刚度。

Fig. 5 Design domain and boundary conditions (a) $P_1 = 1\ 000\ N$ (b) $P_2 = 1\ 000\ N$

经过多目标遗传算法优化,种群代数为80 且优 化终止时,所得目标函数的空间图如图6所示。因 为有4个目标函数f_{stiffness}、f_{weight}、f_{weld}、f_{manufacturability} (这里装配性仅代表焊点数量),所以用4个二维的 空间图来表示目标函数的4维空间,分别如图6a~ 6d 所示。每张二维空间图中的点仅表示结构优化 设计中所得2个目标函数对应的 Pareto 解集,不考

虑剩下 2 个目标函数解集。图中, Δ 、O、◇分别表示 Pareto 典型的解集 R_1 、 R_2 和 R_3 。

观察图6得到以下结论:

(1) 从图 6a 中观察得到质量和刚度呈线性正 比趋势。说明质量越大,结构单元越多,这样结构刚 度就增加了。

(2)从图 6b 中观察得到总质量和制造成本之间呈线性反比趋势。说明制造成本是由模具和价格成本组成,可制造性提高表明结构单元相对减少,这样就减少了结构总质量。

(3)从图 6c 中观察得到制造成本和刚度呈反 比趋势。可制造性提高表明结构单元相对比较少, 而且各子结构相对更简单,间接导致需要更多的连 接单元,因此会降低整个结构的刚度。

(4)从图 6d 中观察得到焊点连接在 3 个区域内比较集中。说明如果整个结构中,用焊点连接单元越多,这样结构的总刚度就会降低。

在图 6 中带注释标志的 $R_1 \ R_2$ 和 R_3 分别表示如 图 7 所示的 3 种典型的 Pareto 解集,其中对应的目标函数值如表 3 所示。

3 种典型的 Pareto 解集表现了各自的特点:

(1)结构 R₁(图 7a)是由 6 个子结构通过 12 个

图 7 实例中典型的 Pareto 优化设计

Fig. 7 Representative Pareto optimal designs for case study (a) R_1 (b) R_2 (c) R_3

表3 目标函数值

Tab.3 Objective function values for R_1 , R_2 and R_3

Pareto 解集	$f_{\rm stiffness}$	$ f_{\rm weight} $	$f_{\rm manufacturability}$	$f_{\rm weld}$
R_1	1.632×10^{-3}	1.125×10^4	1.195×10^{4}	12
R_2	1. 347 $\times 10^{-3}$	0.947×10^{4}	1.063×10^{4}	18
R_3	2. 934 $\times 10^{-3}$	1.216×10^4	1.241×10^4	0

连接单元连接而成。此结构在载荷作用下产生了较 大位移,不过各个目标函数之间相对比较平衡。相 对而言焊接成本会增加,但是刚度要比结构 R₂ 受载 情况下强很多。

(2)结构 *R*₂(图 7b)是由 8 个子结构通过 18 个 连接单元连接而成。这个结构反映焊接成本比较 大,整体刚度比较差。但是,各个子结构比较简单, 同时也比较轻,且制造成本相对比较低。

(3)结构 R₃(图 7c)仅有1个结构单元构成,相 比之下是3个结构中质量最大的1个,结构空间相 比 R₁和 R₂更为复杂,大大提高了制造成本,不过结 构 R₃的刚度是3个中最大的。

4 结束语

探讨了一种基于焊点布局的全局寻优拓扑优化

设计思想。与以往研究中,先给定子结构和连接件 各自的设计域后再优化,本文在连续设计域中,根据 拓扑理论和装配综合,同时优化整个结构件的拓扑 和几何造型,决定连接件的位置和布局形态。这种 自上而下的设计思想由整体控制局部,具有设计思 路清楚、整体把握方便的优点。该方法能在工程结 构设计的初始阶段为设计者提供一个概念性设计, 使结构在布局上得到最优方案。通过对简化的汽车 底座支架结构的力学优化实例,分别从车辆的可靠 性、减轻车重、降低焊接单元和制造成本等多重评价 来综合衡量设计过程。实例得到优化解集可以为设 计者提供必要的信息。连续域中多子结构拓扑优化 是一种非常新颖的方法,进一步工作将延伸到材料 结构和解决三维更复杂的实际优化中。

参考文献

- 1 Jiang T, Chirehdast M. A system approach to structural topology optimization: designing optimal connections [J]. ASME Journal of Mechanical Design, 1997, 119(1): 40 ~ 47.
- 2 Chickermane H, Gea H C. Design of multi-component structural system for optimal layout topology and joint locations [J]. Engineering Computation, 1997, 13(4): 235 ~ 243.
- 3 Li Q, Steven G P, Xie Y M. Evolutionary structural optimization for connection topology design of multi-component systems [J]. Engineering Computation, 2001, 18(3):460 ~ 479.
- 4 Yetis A, Saitou K. Decomposition-based assembly synthesis based on structural considerations [J]. ASME Journal of Mechanical Design, 2002, 124(4): 593~601.
- 5 Lyu N, Saitou K. Decomposition-based assembly synthesis for structural stiffness[J]. ASME Journal of Mechanical Design, 2003, 125(3): 452 ~ 463.
- 6 Lyu N, Saitou K. Topology optimization of multi-component structures via decomposition-based assembly synthesis [J]. ASME Journal of Mechanical Design, 2005, 127(2): 170 ~ 183.
- 7 Ali R, Saitou K. Topology synthesis of multi-component structural assemblies in continuum domains [C] // Proceedings of ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC & CIE 2008), New York, 2008: 50037.
- 8 Moraglio A, Toqelius J, Lucas S. Product geometric crossover for the Sudoku puzzle [C] // Proceedings of IEEE Congress on Evolutionary Computation (CEC 2006), Vancouver, BC, 2006: 470 ~ 476.
- 9 Boothroyd G, Dewhurst P, Knight W. Product design for manufacturing and assembly[M]. New York: Marcel Dekker Inc, 1994.
- 10 Lotter B. Manufacturing assembly handbook [M]. London: Butterworths, 1989.
- 11 Deb K, Agrawal S, Pratab A, et al. A fast and elitist multiobjective genetic algorithm: NSGA- [[[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182 ~ 197.