DOI:10.3969/j.issn.1000-1298.2010.03.034

# 农田信息采集单多跳共存 LEACH 算法\*

沈明霞<sup>1</sup> 马奉先<sup>1</sup> 孙玉文<sup>1</sup> 周 良<sup>1</sup> 林相泽<sup>2</sup> 熊迎军<sup>1</sup> (1.南京农业大学工学院,南京 210031; 2.南京理工大学自动化学院,南京 210094)

【摘要】 针对农田环境信息量丰富的特点,提出一种基于 LEACH 算法的改进型无线传感器网络路由算法——LEACH-SMC。在 LEACH-SMC 算法的稳态阶段,簇头节点到基站间通信采用临界距离来判断和选择多跳或单跳方式,在多跳方式中采用基于最小能量消耗的路由方式。应用 Matlab 对 LEACH-SMC 算法和 LEACH 算法 进行仿真对比分析,结果表明, LEACH-SMC 算法能提高网络有效覆盖面积并延长整个网络的寿命。

关键词:农田信息采集 无线传感器网络 LEACH 算法 中图分类号: TP393 文献标识码: A 文章编号: 1000-1298(2010)03-0163-06

# Improved LEACH Algorithm with Coexistence of Single-hop and Multi-hop Based on the Farm Fields

Shen Mingxia<sup>1</sup> Ma Fengxian<sup>1</sup> Sun Yuwen<sup>1</sup> Zhou Liang<sup>1</sup> Lin Xiangze<sup>2</sup> Xiong Yingjun<sup>1</sup>

(1. College of Engineering, Nanjing Agricultural University, Nanjing 210031, China

2. School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China)

#### Abstract

An improvement of LEACH algorithm was proposed, named LEACH – SMC. The LEACH – SMC protocol algorithm was carried out round by round, and every round was divided into two sections of setup phase and steady station. A critical distance was specified for every cluster head to judge when to use the single-hop or the multi-hop mode between the cluster heads and the base station. The coverage area was greatly improved by the multi-hop manner, and this manner also provided practical value in the nodes distribution in the farm field. It was effective for transmitting the message by single-hop mode, and it could greatly reduce the information delay and packet loss rate too. The coexistence of single-hop and multi-hop can combine the advantages. Simulation results demonstrated that LEACH – SMC protocol could increase network effective coverage area and prolong the network lifetime.

Key words Farm field information collection, Wireless sensor networks, LEACH algorithm

### 引言

目前无线传感器网络分簇算法大多是面向开放 性区域进行研究的,针对特殊环境限定区域的则较 少。LEACH<sup>[1]</sup>是一种典型的无线传感器网络分簇 算法,将基于 LEACH 算法的无线传感器节点布设 在农田中,可对土壤的熵情(温湿度)、pH 值、空气 温湿度等参数进行实时监测,为农田施肥灌溉等提 供信息支持<sup>[2~4]</sup>。但是,LEACH 算法规定簇头节点 到基站间只能采用点对点的单跳通信方式<sup>[5]</sup>,并且 随着算法的不断执行,会出现不同簇头能量消耗不 均衡现象,这将大大缩短网络寿命<sup>[6]</sup>。上述问题使 LEACH 算法不适合直接应用于广阔农田。本文提 出一种改进型算法——LEACH - SMC。该算法在簇 头节点与基站通信时采用单跳与多跳共存的方式, 将单跳方式的延迟小、数据丢包率低等特点与多跳

收稿日期: 2009-07-21 修回日期: 2009-09-14

<sup>\*</sup>国家"863"高技术研究发展计划资助项目(2008AA10Z226)

作者简介: 沈明霞,教授,博士生导师,主要从事机器视觉和信息农业研究,E-mail: mingxia@ njau.edu.cn

方式的网络覆盖面积大、能量效率高等特点相结合。 同时在多跳方式中采用簇头-簇头-基站的能量消耗 最小路径,有利于降低节点的能耗,延长节点和网络 的寿命。

#### 1 LEACH - SMC 算法

#### 1.1 LEACH 算法及其改进算法

LEACH (low energy adaptive clustering hierarchy)算法每执行一次称为一"轮",每轮由构建 阶段和稳定阶段组成。算法希望在每轮执行过程中 形成 k 个簇。每个节点 i 在第 r + 1 轮的开始(时间 为 t)以概率  $P_i(t)$ 将自己选取为簇头,选取过程形 成的簇数期望值为 k。LEACH 算法针对整个初始 阶段节点具有相等能量给出的相应概率计算公式为

$$P_{i}(t) = \begin{cases} \frac{k}{N - k [r \mod(N/k)]} & (C_{i}(t) = 1) \\ 0 & (C_{i}(t) = 0) \end{cases}$$
(1)

其中,如果节点 *i* 在最近的 rmod(N/k) 轮中担 任过簇头节点,则  $C_i(t) = 0$ ,否则  $C_i(t) = 1$ 。

LEACH - C(LEACH - centralized)算法解决了 LEACH算法中"节点根据随机数决定是否当选为簇 首"以及"每轮产生的簇首没有确定的数量和位置" 等方面的问题,大大提高了簇的生成质量。但由于 每个节点都需向基站周期性地报告它们的能量和位 置等信息,成簇开销较大。而LEACH - SMC算法一 旦成簇则簇的大小与簇成员数量成为定值,且节点 不必周期性向基站发送报告,因此LEACH - SMC 算 法能够降低网络能量消耗,特别是在较大网络中节 点与基站距离较远时,效果更为明显。

HEED (hybrid energy-efficient distributed clustering)算法也是从分簇方法入手,对 LEACH 算法作了相应的改进,它在选择簇首的时候考虑了节点能量这一因素。但是同 LEACH - C 算法一样,在数据传输阶段,HEED 算法采用单跳方式发送数据,所以在能量有效性方面 LEACH - SMC 算法优于HEED 算法。

PEGASIS (power-efficient gathering in sensor information system)算法主要通过贪婪算法将网络中 所有节点构成一条链路,在链上选择一个节点作为 链头节点,并且在数据传输过程中使用 Token 进行 控制。虽然 PEGASIS 算法采用了多跳方式向基站 发送数据,但是其最后向基站发送数据的节点只有 一个,而在 LEACH - SMC 中却有多个簇头节点与基 站通信,这可以有效地把整个区域内能量消耗分担 到多个节点上去,均衡了节点的能量消耗、延长了网 络寿命。

#### 1.2 单跳与多跳

在大部分环境里,无线信号随着传输距离增大 按指数规律衰减,采用中继节点的方法可以比直接 通信所消耗的能量更少。当所有接收机的信噪比 (SNR) 恒定时, 若直接通信距离为 d, 则需要  $cd^{\alpha}$  辐 射能量(c为一常数;2 $\leq \alpha \leq 5$ ,为路径损失系数);若 在 d/2 处安装一个中继节点,则辐射能量下降到  $2c(d/2)^{\alpha[7]}$ 。但是,在节点节能方面,并非采用中继 节点实现簇头多跳方式绝对优于单跳方式。上述分 析只是考虑了辐射的能量,而不是实际消耗的能量, 特别是没有考虑中继节点消耗的能量。短距离通信 时采用中继节点,实际上浪费了能量。因此,如果没 有考虑这层关系就认定多跳技术能够节能则是一个 误解。Min 和 Chandrakasan<sup>[8]</sup>将其列为无线通信中 有关能耗的最主要误区。直接通信与多跳通信的分 界线距离主要取决于元器件的参数与实际应用的环 **追**参数。

#### 1.3 模型建立

为了探求这种分界线距离,首先构建一个类似 于文献[5]中的收发机通信模型来表示节点向距离 为 *d* 处发送一个数据包所要消耗的能量值,模型为

$$E = l + cd^{\alpha} \tag{2}$$

其中 *l* 表示在收或发数据中的硬件电路损耗,*cd<sup>α</sup>* 表示数据包在射频放大过程中的能量消耗,*c* 是一个常量,与收发射机天线的增益有关,α 是数据包发送过程能量消耗的度量值,它受周围环境影响很大。 在楼房集中区域、工厂区以及密度较大的农作物区 域等,α 的值会比较大,一般为3~5。在一些空旷 地区,这个值则较小,一般只有2 左右。

本文提出的 LEACH - SMC 算法将根据江苏洪 泽湖农场一块实验麦田的实际特征进行仿真。该实 验田呈矩形,4 个顶点经纬度坐标分别为 A(118°23′ 45.89″,33°25′14.92″)、B(118°24′0.996″,33°25′ 3.07″)、C(118°24′7.78″,33°25′8.75″)、D(118°23′ 52.89″,33°25′20.67″)。

麦田长约为 534.46 m,宽约为 247.71 m,面积 约为 132 389.40 m<sup>2</sup>。实验田地势平坦,无明显起 伏,田中有少量建筑物,高度均在 4.00 m 以内,种植 烟农 9 号等各类实验麦苗,作物高度 1.00 m 左右。 为此,本文选取 α 值为 4 进行仿真实验。

根据式(2)的模型,对于簇头到基站的单跳通 信方式,若保证整个网络能正常运行 T 轮,则其能 量消耗为

$$E_s = T(l + cd^{\alpha}) \tag{3}$$

对于簇头到基站的多跳通信方式,为简化分析, 假设信源节点到信宿节点间只有一次数据包的中

165

转,并且节点在收与发数据包过程中的硬件损耗量 相同。如图1所示。





图中,1 号簇头是信源节点,2 号簇头作为中间 转发节点,基站是信宿节点,β 是一个0到1之间的 实数。1 号簇头发出的数据包经2 号簇头转发后被 基站接收。对于簇头到基站的多跳通信方式,若保 证整个网络能正常运行*T*轮,则其能量消耗为

 $E_{m} = T \{ 2l + c(\beta d)^{\alpha} + l + c[(1 - \beta)d]^{\alpha} \} \quad (4)$ 

令 E<sub>s</sub>/E<sub>m</sub> = 1,即在同等条件下,单跳通信与多跳通 信所消耗的能量相同,则有

$$\frac{T(l+cd^{\alpha})}{T\{2l+c(\beta d)^{\alpha}+l+c\lceil (1-\beta)d\rceil^{\alpha}\}} = 1 \quad (5)$$

由于上文已经讨论过 α 的取值问题,在较密集的农 田中,α 值取为4,代入式(5)有

$$2\beta^{4} - 4\beta^{3} + 6\beta^{2} - 4\beta + \frac{2l}{cd^{4}} = 0$$
 (6)

由于<sup>2l</sup><sub>cd<sup>4</sup></sub>的各参数(l、c、d)或与具体硬件电路有关或 与实际应用环境相关,但在某一项具体应用中,该项 为确定已知。所以,可以通过迭代的办法求得β。

#### 1.4 LEACH-SMC 的工作机制

LEACH - SMC 是 low energy adaptive clustering hierarchy single-hop and multi-hop coexistence 的缩写,即单多跳共存的低功耗自适应分簇算法。

与 LEACH 算法类似,每一次 LEACH - SMC 算 法的执行被称为一"轮(Round)",每轮由构建阶段 和稳态阶段组成,如图 2 所示。在构建阶段,节点被 分成若干个簇,并选举产生相应的簇头和决定簇成 员的 归 属。在稳态阶段, LEACH - SMC 算法与 LEACH 算法相比有了本质的区别。



图 2 LEACH - SMC 构建和稳态阶段示意图 Fig. 2 Sketch of the setup and steady state of LEACH - SMC algorithm

为了便于讨论分析,假定所有节点在初始条件 下都具有相同的能量。下面针对每个阶段的过程进 行详尽的描述。

1.4.1 构建阶段

(1) 簇首节点选举:LEACH - SMC 簇首节点的 选举机制与 LEACH 算法相似。网络中的传感器节 点生成 0~1 之间的随机数,如果该随机数小于阈值 P<sub>i</sub>(t),则该节点被选为簇头节点。

(2) 簇头被选定后,采用非持续 CSMA 的 MAC 协议广播一个 ADV(advertisement)消息。非簇头节 点在接收到周围簇头节点的 ADV 消息后,根据接收 信号强度确定加入到哪个簇当中(选择接收信号强 度最大的那个簇头)。一旦非簇头节点决定加入到 哪个簇之后,采用非持续 CSMA 的 MAC 协议向其所 选择的簇头发送消息,通知簇头将成为它的一个成 员<sup>[9]</sup>。在收到非簇头节点的消息后,簇头基于成员 节点的数目产生一个 TDMA 时隙表,为每个成员分 配时隙,从而保证了数据消息间没有冲突,当各节点 知道了自己的时隙后就进入稳态阶段。 1.4.2 稳态阶段

(1)各个簇头计算出和基站之间的距离,构成集合

$$d = \{d_1, d_2, \cdots, d_k\}$$

选取其中的最大距离  $d_{\max}$ , 以  $\beta d_{\max}$ 距离作为簇 头节点选择与基站进行单、多跳通信的分界线。当  $d_i \ge \beta d_{\max}$ 且  $d_i \in d$  时, 簇首采用多跳方式与基站通 信。当  $d_i < \beta d_{\max}$ 且  $d_i \in d$  时, 簇首采用单跳方式与 基站通信。

(2)每个选择进行单跳通信的节点向网络中进 行广播。其余单跳节点对于接收到的广播内容不予 理会,所有选择多跳通信的节点将记下单跳节点的 网络标号等广播内容,并形成集合  $G = \{g_1, g_2, \dots, g_n\}, n$ 表示最大选择单跳节点数。

(3)选择进行多跳通信的节点依据 G 中保存 的单跳节点的网络标号等信息向单跳节点进行广播,假设有 m 个多跳节点及 n 个单跳节点,则采用 一次转发方式可以形成  $m \times n$  条路由通径,每一条 通径的能量消耗记为  $RC_iRC_j, i \in (1,m), j \in (1,n)$ 。 则 min(RC<sub>i</sub>RC<sub>i</sub>)为最小能量消耗的路由方式。

(4)单跳节点直接与基站进行通信,多跳节点选择 min(*RC<sub>i</sub>RC<sub>i</sub>*)路径与基站通信。

(5)稳定阶段持续一段时间后,网络重新进入 上述簇的建立阶段和稳定阶段,不断循环。

#### 1.5 LEACH-SMC 算法示意图

如图 3 所示,矩形代表一块麦田区域,在 LEACH-SMC算法的构建阶段后,被划分成了 6 个 簇区域。空心圆点代表簇成员,实心圆点代表簇头 节点,基站位于矩形区域的外部。图中簇 1 中的簇 头到基站的距离最远,距离为 d<sub>max</sub>,则以βd<sub>max</sub>作为簇 头到基站单、多跳通信的分界线距离。图中以矩形 中间的一条粗虚线代表分界线,虚线右侧各簇簇头 (即4、5、6 号簇的簇头)可以直接单跳通信,点虚线 条代表簇头节点与基站直接通信。粗虚线左边各簇 头(即1、2、3 号簇的簇头)要采用多跳通信方式。 由1、2、3 号簇簇头分别发出的并在4、5、6 号簇簇头 处终止的箭头代表多跳通信方式的第一跳,4、5、6 号簇簇头又分别与基站建立连接。通过比较每一条 通路的能量消耗(RC<sub>i</sub>RC<sub>i</sub>),选择能量消耗最小的一 条,即构成多跳通路。



# Fig. 3 Sketch of LEACH – SMC algorithm

#### 2 仿真结果及分析

#### 2.1 仿真内容

(1) 在 100 m × 100 m 的麦田区域内,随着算法 轮数 的 增 加,比 较 分 析 LEACH - SMC 算 法 与 LEACH 算法的死亡节点数和总能量消耗量的变化 趋势。

(2) 在 200 m × 200 m 的麦田区域内,重复上述 比较。

#### 2.2 仿真条件

仿真软件: Matlab 2006b。仿真参数如下: 假设 网络中传感器节点数 n 为 100 个; 每个节点初始能 量为 0.50 J; 麦田区域为 100 m × 100 m 和 200 m × 200 m 两种情况; p 是簇头节点数与节点总数的比值 (取 p = 0.05); l = 50 J/bit 表示接收机电路和发射机 电路每处理 1 bit 数据的功耗; c = 0.000 065 J/bit 表 示发射放大器向单位面积发射 1 bit 数据的功耗; 仿 真时间 r 取 1 000 轮; 网络中基站的位置设定为 (150,50)和(250,100)。

## 2.3 仿真结果及分析

图 4 中空心圆点表示簇成员,"+"表示簇头。



麦田区域内的随机分布图

Fig. 4 Random distribution of 100 nodes in areas of 10 thousand square meters and 40 thousand square meters (a) 100 m×100 m麦田 (b) 200 m×200 m麦田

如图 5a 所示,在 100 m × 100 m 的麦田中, LEACH 算法在被执行到约 500 轮时节点已经全部 死亡,而 LEACH – SMC 算法在被执行到约 920 轮时 节点才全部死亡。同时,LEACH – SMC 算法直到 100 轮以后才出现第一个死亡节点,而此时 LEACH 算法的死亡节点数已经超过 20 个。

如图 5b 所示,在 200 m×200 m麦田区域中, LEACH 算法的节点在 320 轮左右时已经全部死亡, LEACH - SMC 算法的节点在 850 轮左右时才全部 死亡。对比 100 个节点随机分布在 100 m×100 m 麦田的情况,LEACH 算法中节点全部死亡的轮 数提前了 180 轮左右,而 LEACH - SMC 算法中节 点全部死亡的轮数只提前了约 70 轮。在农田面 积增加4倍的情况下,LEACH 算法中节点全部死 亡时间大大提前,而 LEACH - SMC 算法的节点全 部死亡时间变化相对较小,表明 LEACH - SMC 算 法相对于 LEACH 算法能提供更大的有效覆盖面 积。

如图 6a 所示,在 100 m×100 m麦田区域内, LEACH 算法在被执行到约 500 轮时,网络所有能量 (50J)被耗尽;LEACH – SMC 算法在被执行到 920 轮左右时网络总能量耗尽。LEACH 算法曲线在开 始的前半段能量消耗的速度较快,而后半段则相对 较慢,究其原因是开始阶段随机选取的簇头节点距 离基站较远,致使发射功率大增,能量损耗较大,而 后半段由于选取的簇头节点较基站较近,故能量消 耗较小。相比较而言,LEACH – SMC 曲线全程比较 平稳,没有急升急降等阶段,原因是由于簇首节点依 据位置到基站的实际距离选择采用了单跳或多跳的 通信方式,有效降低了簇头节点能量的过度消耗,避 免了由于各轮簇头节点到基站距离不同,能量的不 均衡消耗。图 6b 表示在 200 m × 200 m 麦田区域







图 5 100 m×100 m 与 200 m×200 m 麦田区域中 100 个节点轮数与死亡节点数关系

Fig. 5 Relationships between round numbers and dead node numbers of 100 nodes in areas of 10 thousand

square meters and  $40\ {\rm thousand}\ {\rm square}\ {\rm meters}$ 

(a) 100 m×100 m麦田 (b) 200 m×200 m麦田



图 6 100 m × 100 m 与 200 m × 200 m 麦田区域中 100 个节点轮数与总消耗能量关系 Fig. 6 Relationships between round numbers and total energy consumption of 100 nodes in areas of 10 thousand square meters and 40 thousand square meters (a)100 m × 100 m 麦田 (b)200 m × 200 m 麦田

#### 3 结束语

提出了在农田环境下的单多跳共存 LEACH 改 进算法——LEACH - SMC 算法。由于继承了 LEACH 按轮选举簇头的特点,使得新算法各簇能量 消耗均衡地分布在各节点上;根据簇头节点到基站 间通信的临界距离采用单跳与多跳共存模式;在多 跳模式中选择簇头节点到基站最小能量消耗的路由 通径。仿真主要针对在特定农田区域内的有效覆盖 面积和节点能量利用效率情况,对传统 LEACH 算 法与本文提出的 LEACH – SMC 算法进行了对比分 析,结果显示 LEACH – SMC 算法在网络的覆盖面积 上和网络的生存时间上较 LEACH 都有长足的进 步。

参考文献

- 1 Heinzelman W R, Chandrakasan A, Balakrishnan H. Energy-efficient communication protocol for wireless microsensor networks[C]//Proceedings of the 33rd Hawaii International Conference on System Sciences. Maui, Hawaii: IEEE Computer Society, 2000:3 005 ~ 3 014.
- 2 冯友兵,张荣标,沈敏. 面向精确灌溉的无线传感器网络构建[J]. 农业机械学报,2009,40(1):56~59. Feng Youbing, Zhang Rongbiao, Shen Min. Construction of wireless sensor networks for precision irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(1): 56~59. (in Chinese)
- 3 乔晓军,张馨,王成,等.无线传感器网络在农业中的应用[J].农业工程学报,2005,21(2):232~234.

Qiao Xiaojun, Zhang Xin, Wang Cheng, et al. Application of the wireless sensor networks in agriculture [J]. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(2): 232 ~234. (in Chinese)

4 刘卉,汪懋华,王跃宣,等.基于无线传感器网络的农田土壤温湿度监测系统的设计与开发[J].吉林大学学报:工学版,2008,38(3):605~606.

Liu Hui, Wang Maohua, Wang Yuexuan, et al. Development of farmland soil moisture and temperature monitoring system based on wireless sensor network [J]. Journal of Jilin University: Engineering and Technology Edition, 2008, 38(3):605 ~ 606. (in Chinese)

- 5 Heinzelman W R, Chandrakasan A, Balakrishnan H. An application-specific protocol architecture for wireless microsensor networks [J]. IEEE Transactions on Wireless Communications, 2002, 1(4):660 ~ 670.
- 6 Vivek Mhatre, Catherine Rosenberg. Design guidelines for wireless sensor networks: communication, clustering and aggregation [J]. Ad. Hoc. Networks, 2004, 2(1):45 ~ 63.
- 7 Holger Karl, Andreas Willig. 无线传感器网络协议与体系结构[M]. 北京: 电子工业出版社, 2007.
- 8 Min R, Chandrakasan A. MobiCom poster: top five myths about the energy consumption of wireless communication [J]. ACM SIGMOBILE Mobile Computing and Communications Review, 2003,7 (1):65~67.
- 9 Zhang Yan, Luo Jijun, Hu Honglin. 无线网状网:架构、协议与标准[M]. 郭达,张勇,彭晓川,译. 北京:电子工业出版 社,2008.
- 10 肖德琴,周权,王景利,等. 基于精细化梯度的水分传感器网络能量高效查询算法[J]. 农业机械学报,2009,40(12): 169~176.

Xiao Deqin, Zhou Quan, Wang Jingli, et al. Energy-efficient query algorithms for moisture sensor networks based on fine-grain gradient [J]. Transactions of the Chinese Society for Agricultural Machinery,  $2009, 40(12): 169 \sim 176$ . (in Chinese)

 张喜海,张长利,房俊龙,等.面向精细农业的土壤温度监测传感器节点设计[J].农业机械学报,2009,40(增刊): 237~240.

Zhang Xihai, Zhang Changli, Fang Junlong, et al. Smart sensor nodes for wireless soil temperature monitoring systems in precision agriculture [J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40 (Sup.): 237 ~ 240. (in Chinese)

#### (上接第157页)

参考文献

- 1 陈复生. 食品超高压加工技术 [M]. 北京:化学工业出版社,2005.
- 2 Boonyaratanakornkit B B, Park C B, Clark D S. Pressure effects on intra- and intermolecular interactions within proteins [J]. Biochimica et Biophysica Acta, 2002, 1595(1~2): 235~249.
- 3 Lullien-Pellerin V, Balny C. High-pressure as a tool to study some proteins' properties: conformational modification, activity and oligomeric dissociation [J]. Innovative Food Science and Emerging Technologies, 2002, 3(3): 209 ~ 221.
- 4 Gianibelli M C, Larroque O R, MacRitchie F, et al. Biochemical, genetic and molecular characterization of wheat glutenin and its component subunits [J]. Cereal Chemistry, 2001, 78(6): 635 ~ 646.
- 5 Day L, Augustin M A, Batey I L, et al. Wheat-gluten uses and industry needs[J]. Trends in Food Science and Technology, 2006, 17(2): 82~90.
- 6 Apichartsrangkoon A, Ledward D A, Bell A E, et al. Physicochemical properties of high pressure treated wheat gluten [J]. Food Chemistry, 1998,63(2): 215 ~ 220.
- 7 Kieffer R, Schurer F, Köhler P, et al. Effect of hydrostatic pressure and temperature on the chemical and functional properties of wheat gluten: studies on gluten, gliadin and glutenin[J]. Journal of Cereal Science, 2007,45(3): 285 ~ 292.
- 8 Valérie Micard, Stéphane Guilbert. Thermal behavior of native and hydrophobized wheat gluten, gliadin and glutenin-rich fractions by modulated DSC[J]. International Journal of Biological Macromolecules, 2000, 27(3): 229 ~ 236.
- 9 GB/T5506.2—2008 小麦和小麦粉 面筋含量 第2部分:仪器法测定湿面筋[S].
- 10 SB/T10137—1993 面条用小麦粉[S].
- 11 GB/T10220—1988 感官分析方法总论[S].
- 12 GB/T14614—2006 小麦粉 面团的物理特性 吸水量和流变学特性的测定 粉质仪法[S].
- 13 Akinori Mizuno, Masata Mitsuiki, Masao Motoki. Effect of transglutaminase treatment on the glass transition of soy protein [J]. Journal of Agricultural and Food Chemistry, 2000, 48 (8):3 286 ~ 3 291.
- 14 张先和,任云丽,高巍.正确评价小麦品质[J]. 粮油食品科技,2000,8(1):22~23.