基于BiLSTM及权重组合策略的膜污染预测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

滁州市八大产业链强链补链攻坚项目(2022GJ011)和滁州市“双创之星”产业创新团队项目


Membrane Contamination Prediction Based on BiLSTM and Weight Combination Strategy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对膜分离法回收谷朊粉加工废水中的蛋白质时极易出现的膜污染问题,提出了一种基于双向长短时记忆网络(Bi-directional long short-term memory, BiLSTM)的权重组合模型用于对膜污染状况的预测。以谷朊粉加工废水提取回收中试生产线采集的14个相关变量作为输入,以膜通量变化量作为输出,建立支持向量机模型(Support vector machine, SVM)、反向传播神经网络模型(Back propagation, BP)、随机森林模型(Random forest, RF)、广义回归神经网络模型(Generalized regression neural network, GRNN)4种基准模型和BiLSTM模型1种给定模型,通过误差倒数法计算基准模型与给定模型的权重,构建权重组合预测模型;最后以决定系数R2和均方误差(MSE)为评价指标,分析单项模型与权重组合模型的预测性能。结果表明,权重组合模型能够综合单项模型优点,在性能上显著优于单项模型;其中BP+BiLSTM+RF模型R2高达0.9906,具有较高的拟合精度;MSE为1.004L2/(h2·m4),在所有模型中最低,相较BP、BiLSTM和RF单项模型,分别降低46.05%、67.24%、50.81%。所开发的权重组合模型可用于谷朊粉加工废水蛋白回收处理时膜污染程度精确预测。

    Abstract:

    Aiming at the membrane contamination problem that is very likely to occur when recovering proteins from gluten processing wastewater by membrane separation method, a weight combination model based on bi-directional long shortterm memory (BiLSTM) was proposed for the prediction of membrane contamination status. Taking the 14 relevant variables collected from the pilot production line of gluten processing wastewater extraction and recycling as inputs, and the changes in membrane flux as outputs, four baseline models were established: support vector machine model (SVM), back propagation neural network model (BP), random forest model (RF), generalized regression neural network (GRNN), together with one given model: BiLSTM model. The weights of the baseline model and the given model were calculated by the inverse error method to construct the weight combination prediction model. Finally, the prediction performance of the single model and the weight combination model was analyzed by using the coefficient of determination R2 and the mean square error (MSE) as the evaluation indexes. The results showed that the weight combination model was able to synthesize the advantages of the singleitem model and significantly outperformed the single-item model in terms of performance. Among them, the BP+BiLSTM+RF model had a high R2 of 0.9906 with high fitting accuracy and MSE of 1.004L2/(h2·m4), which was the lowest among all models. Compared with BP, BiLSTM and RF single-item models, the reduction was 46.05%, 67.24% and 50.81%, respectively. The developed weight combination model can be used for accurate prediction of membrane contamination during protein recovery treatment of gluten processing wastewater.

    参考文献
    相似文献
    引证文献
引用本文

陈坤杰,张士航,劳裕婷,孙啸,贲宗友,柏钰.基于BiLSTM及权重组合策略的膜污染预测[J].农业机械学报,2025,56(6):684-690. CHEN Kunjie, ZHANG Shihang, LAO Yuting, SUN Xiao, BEN Zongyou, BAI Yu. Membrane Contamination Prediction Based on BiLSTM and Weight Combination Strategy[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(6):684-690.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-21
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-10
  • 出版日期:
文章二维码