语义先验改进Cartographer的机器人重定位方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2019YFB1310000)和湖北省重点研发计划项目(2020BAB098)


Semantic Prior Enhanced Robot Relocation Method for Cartographer
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对Cartographer算法在室内重定位时鲁棒性差和耗时长等问题,提出一种利用语义信息改进Cartographer算法的重定位方法,以提高机器人在室内场景下的重定位性能。首先,通过RGB-D相机与深度学习技术提取机器人所处环境中的语义物体信息,并对语义信息进行点云映射,然后将提取的语义点云映射信息与基于Cartographer算法构建的栅格地图通过投影转换进行融合,构建出完整的二维语义栅格地图,再将提取的语义信息构建语义物体关系链表。在机器人进行重定位时,利用语义栅格地图提供的语义信息给予机器人一个先验位姿,从而缩小Cartographer算法匹配范围,减少算法迭代次数,实现机器人快速重定位。最后,搭建真实室内场景进行实验验证,结果表明,本文算法相比于原始Cartographer算法和AMCL算法,在相似场景下实时性分别提高49.78%、78.27%,在退化场景下实时性分别提高76.18%、83.96%,重定位成功率平均提升75%以上。此外,所构建的二维语义栅格地图可支持语义导航与规划,在服务机器人等场景中具有应用潜力。

    Abstract:

    Aiming to address the problems of insufficient robustness and high computational cost of the Cartographer algorithm during indoor relocation, a relocation method was proposed that enhanced Cartographer by incorporating semantic information, thereby improving robot relocation performance in complex indoor environments. Semantic object information from the robot’s surroundings was extracted by using an RGB-D camera and deep learning techniques, and was subsequently mapped into a structured point cloud. The extracted semantic point cloud was then fused with the grid map constructed by the Cartographer algorithm through projection transformation to generate a complete and informative 2D semantic grid map. A semantic object relationship linked list was also built based on the extracted semantic information to represent inter-object spatial context. During the relocation process, the semantic information provided by the 2D semantic grid map was used to offer a prior pose estimation for the robot, narrowing the search space of the Cartographer algorithm, reducing the number of iterations, and enabling rapid and efficient relocation. Experiments conducted in real indoor scenarios validated the effectiveness of the proposed method. The results showed that, in similar environments, the proposed method improved real-time performance by 49.78% and 78.27% compared with that of the original Cartographer and AMCL algorithms, respectively. In degraded scenarios, improvements reached 76.18% and 83.96%, respectively. Moreover, the relocation success rate was increased by over 75% on average. In addition, the constructed 2D semantic grid map supported semantic navigation and planning, demonstrating promising potential for application in service robots and related fields.

    参考文献
    相似文献
    引证文献
引用本文

蔡芸,曾超,王磊,董杰,蒋林,罗焱,李云飞.语义先验改进Cartographer的机器人重定位方法[J].农业机械学报,2025,56(6):585-593,683. CAI Yun, ZENG Chao, WANG Lei, DONG Jie, JIANG Lin, LUO Yan, LI Yunfei. Semantic Prior Enhanced Robot Relocation Method for Cartographer[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(6):585-593,683.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-24
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-10
  • 出版日期:
文章二维码