基于旋转目标检测和双目视觉的大闸蟹质量估算方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2023YFD2400502)


Weight Estimation Method for Chinese Mitten Crab Based on Oriented Object Detection and Binocular Vision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确估算大闸蟹质量对于大闸蟹生长状况监测、养殖密度控制、投饵量确定和产量预测等具有重要作用。现有大闸蟹质量估算方法通常使用单目相机,依赖参照物进行真实体尺校正,且图像中大闸蟹背甲角度不固定容易导致目标检测精度低等问题,限制了其在实际养殖环境中的应用。针对上述问题,提出了一种基于旋转目标检测和双目视觉的大闸蟹质量估算方法。通过双目相机采集大闸蟹图像;构建基于SSP-YOLO v7(SK-SimCSPSPPF-ProbIoU-YOLO v7)的大闸蟹背甲旋转目标检测模型,在主干部分引入SK(Selective kernel)注意力机制,使用SimCSPSPPF(Simplified cross stage partial spatial pyramid pooling fast)优化空间金字塔池化,使用ProbIoU损失函数(Probabilistic intersection over union)计算旋转框回归损失,增强特征提取能力的同时减少计算量,有效提高了旋转目标检测精度;对大闸蟹双目图像进行三维重建,通过欧氏距离公式计算大闸蟹背甲体尺;最后构建基于粒子群算法优化的PSO-XGBoost(Particle swarm optimization-eXtreme gradient boosting)模型,实现不同性别大闸蟹质量估算。在自建数据集上进行测试,本文提出的背甲旋转目标检测模型mAP0.5为99.46%,模型参数量为7.321×106,浮点运算量为1.6684×1011,帧率为39f/s;基于PSO-XGBoost的质量估算模型对于公蟹均方根误差为8.549g,平均绝对误差为6.172g,决定系数为0.946,对于母蟹均方根误差为6.902g,平均绝对误差为5.175g,决定系数为0.955。结果表明本文方法能够实现大闸蟹质量估算,为大闸蟹生长状况监测和智能化养殖提供技术支持。

    Abstract:

    Accurately estimating the weight of Chinese mitten crab (hairy crab) plays an important role in monitoring growth status, controlling breeding density, determining feeding amount, and predicting production. Existing crab weight estimation methods usually use monocular cameras and rely on reference objects for real body size correction. And the uncertain angle of the hairy crab carapace in the image can easily lead to low target detection accuracy, which limits its application in actual breeding environments. In order to solve the above problems, a crab weight estimation method based on oriented object detection and binocular vision was proposed. Firstly, hairy crab images were collected through binocular cameras. Secondly, a hairy crab carapace oriented object detection model based on SSP-YOLO v7 (SK-SimCSPSPPF-ProbIoU-YOLO v7) was built. The model introduced the selective kernel (SK) attention mechanism in the backbone, used simplified cross stage partial spatial pyramid pooling fast (SimCSPSPPF) to optimize the spatial pyramid pooling, and used probabilistic intersection over union (ProbIoU) loss to calculate the rotation box regression loss, enhance feature extraction capability while reducing the amount of calculation, and effectively improve the accuracy of oriented object detection. Then three-dimensional reconstruction of the hairy crab binocular image was performed, and the body size of the hairy crab carapace was calculated through the Euclidean distance formula. Finally, a particle swarm optimization-extreme gradient boosting (PSO-XGBoost) model based on particle swarm optimization was constructed to fit the body size and true weight of hairy crabs of different genders to achieve weight estimation of hairy crabs of different genders. Tested on the self-built dataset, the mAP0.5 of the model proposed was 99.46%, the model parameters were 7.321×106, the floating point operations (FLOPs) was 1.6684×1011, and the FPS was 39f/s. The weight estimation model based on PSO-XGBoost had a root mean square error (RMSE) of 8.549g, a mean absolute error (MAE) of 6.172g, a coefficient of determination of 0.946 for male crabs, and a RMSE of 6.902g, a MAE of 5.175g, a coefficient of determination of 0.955 for female crabs. The results showed that this method can accurately estimate the weight of hairy crabs and provide technical support for growth monitoring and intelligent breeding of hairy crabs.

    参考文献
    相似文献
    引证文献
引用本文

段青玲,张宇航,孔铭瑞,许冠华,刘颖斐.基于旋转目标检测和双目视觉的大闸蟹质量估算方法[J].农业机械学报,2025,56(6):575-584,672. DUAN Qingling, ZHANG Yuhang, KONG Mingrui, XU Guanhua, LIU Yingfei. Weight Estimation Method for Chinese Mitten Crab Based on Oriented Object Detection and Binocular Vision[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(6):575-584,672.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-18
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-10
  • 出版日期:
文章二维码