基于轻量级CDW-YOLO v7的鱼类排便行为自动检测方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(62373390)、广东省基础与应用基础研究项目(2023A1515011230)和广州市科技计划项目(2023E04J1238、2023E04J1239)


Automatic Detection of Fish Defecation Behavior Based on Lightweight CDW-YOLO v7
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    粪便是集约化水产养殖系统中有机废物的主要来源,排便数量的增加和时间的延长都会加快养殖水质中氨氮、亚硝酸盐等污染物的积累浓度和速度,因此,排便行为模式对于维持最佳水环境和确保可持续的鱼类生产至关重要。为解决传统排便行为分析费时费力的问题,本研究提出一种基于改进YOLO v7-tiny的高性能、轻量级的鱼类排便行为识别模型CDW-YOLO v7。该模型采用基于C2f结构的双向特征金字塔网络(C2f-bidirectional feature pyramid network,C2f-BiFPN)优化识别排便行为的多尺度和非线性特征融合能力,同时引入具有注意力机制的动态检测头(Dynamic head,DyHead)以增强模型在复杂环境中对鱼类排便行为关键特征的提取能力,并结合WIoU损失函数,减少因鱼类遮挡、重叠等造成的漏检现象,提高模型的准确性。实验结果表明,与基线模型YOLO v7-tiny相比,CDW-YOLO v7模型具有更好的性能,参数量减少2.56×106,浮点运算量降低5.90×109,同时平均精度均值(mean Average Precision,mAP)提高204个百分点。此外,该模型在模型大小、精度和检测速度等方面,均优于3种经典目标检测算法(YOLO v3-tiny、YOLO v4-tiny和YOLO v5s)。本研究为鱼类排便行为的精准检测和智能化水产养殖系统的发展提供了理论基础。

    Abstract:

    Fecal defecation is a primary source of organic waste in intensive aquaculture systems. The increase in the amount of defecation and the extension of time will accelerate the accumulation of pollutants such as ammonia nitrogen and nitrite in the aquaculture water. Therefore, monitoring fish defecation behavior is essential for maintaining optimal water conditions and ensuring sustainable fish production. In order to solve the problem that traditional defecation behavior analysis is time-consuming and labor-intensive, a high-performance, lightweight fish defecation behavior recognition model CDW-YOLO v7 was proposed based on the innovative enhancement of the YOLO v7-tiny. In the proposed model, a bidirectional feature pyramid network (C2f-BiFPN) was applied to optimize feature extraction within the neck network, a DyHead target detection head with an attention mechanism was utilized to accurately detect fish defecation behavior and strengthen relevant features, and the WIoU loss function was incorporated to improve the accuracy of the model’s outputs. Experimental results indicated that the performance of the CDW-YOLO v7 model was much better than that of the baseline YOLO v7-tiny model because reducing the number of parameters loading models by 2.56×106 and giga floating-point operations per second (GFLOPs) by 5.90×109, while increasing mean average precision (mAP) by 2.04 percentage points. Additionally, the proposed model surpassed three classic object detection algorithms (YOLO v3-tiny, YOLO v4-tiny, and YOLO v5s) when evaluating criteria such as model size, accuracy, and detection speed. The research result can provide a theoretical foundation for subsequent detection of fish health and establishing a quantitative relationship between fish behavior and water quality.

    参考文献
    相似文献
    引证文献
引用本文

徐龙琴,郑钦月,高学凯,崔猛,刘双印,谢彩健.基于轻量级CDW-YOLO v7的鱼类排便行为自动检测方法[J].农业机械学报,2025,56(6):554-564. XU Longqin, ZHENG Qinyue, GAO Xuekai, CUI Meng, LIU Shuangyin, XIE Caijian. Automatic Detection of Fish Defecation Behavior Based on Lightweight CDW-YOLO v7[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(6):554-564.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-23
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-10
  • 出版日期:
文章二维码