基于改进YOLO v8n的花生叶片病害检测方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

中国高校产学研创新基金—新一代信息技术创新项目(2020ITA03012)和油气钻采工程湖北省重点实验室(长江大学)开放基金项目(YQZC202205)


Peanut Leaf Disease Detection Method Based on Improved YOLO v8n
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对花生叶片病害在复杂环境下相似特征难以准确识别的问题,提出一种基于改进YOLO v8n模型的检测算法YOLO-ADM。首先,使用ADown模块代替部分CBS模块,降低下采样中的信息损失,减少了模型的参数量;其次,将可变形注意力(Deformable attention,DA)机制添加到C2f模块组成C2f-DA结构,替换了SPPF上层的C2f模块,使模型聚焦到花生叶片病害的特定区域,准确捕捉其特征;最后,设计了一种全新的多尺度特征融合网络MFI Neck代替了YOLO v8n原有的颈部网络,增强了模型对不同尺度特征的融合能力。通过在花生叶片病害数据集上进行实验,结果表明,改进算法的准确率、召回率、mAP@0.5和mAP@.5:0.95分别达到92.3%、91.0%、95.6%和85.2%,相比原始的YOLO v8n分别提高4.5、0.2、1.6、3.0个百分点,且模型内存占用量减少0.65MB,参数量下降3.70×10.5。本算法在保证模型轻量化的前提下提升了检测能力,能够有效满足复杂环境下花生叶片病害的识别需求,为叶片病害的检测和监控提供了技术参考。

    Abstract:

    Aiming to address the challenge of accurately identifying similar features of peanut leaf diseases in complex environments, an improved detection algorithm, YOLO-ADM, was proposed based on the YOLO v8n model. Firstly, the ADown module replaced part of the CBS module, reducing information loss during down sampling and decreasing the model’s parameter count. Secondly, a deformable attention mechanism was integrated into the C2f module to form the C2f-DA structure, which replaced the C2f module in the upper layer of the SPPF. This modification enabled the model to focus on critical regions of peanut leaf diseases and effectively capture their distinguishing features. Finally, a novel multi-scale feature fusion network, termed MFI Neck, was designed to replace the original YOLO v8n neck network, enhancing the model’s capacity for multi-scale feature fusion. Experimental results showed that the improved YOLO-ADM algorithm achieved precision of 92.3%, recall rate of 91.0%, mean average precision (mAP@0.5) of 95.6%, and mean average precision (mAP@0.5:0.95) of 85.2%. Compared with the original YOLO v8n model, these metrics were increased by 4.5, 0.2, 1.6, and 3.0 percentage points, respectively. This approach enhanced detection performance while maintaining model efficiency, effectively meeting the identification requirements of peanut leaf diseases in complex environments, and provided a reliable reference for the detection and monitoring of leaf diseases.

    参考文献
    相似文献
    引证文献
引用本文

白凯,张玉杰,苏邓文,秦涛,彭志强.基于改进YOLO v8n的花生叶片病害检测方法[J].农业机械学报,2025,56(6):518-526,564. BAI Kai, ZHANG Yujie, SU Dengwen, QIN Tao, PENG Zhiqiang. Peanut Leaf Disease Detection Method Based on Improved YOLO v8n[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(6):518-526,564.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-29
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-10
  • 出版日期:
文章二维码