基于多维成像特征+UGV的设施蔬菜表型参数检测方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

江苏大学农业装备学部项目(NZXB20210106)和国家重点研发计划项目(2022YFD2002302)


Phenotypic Detection of Facility Vegetables Based on Multi-dimensional Imaging Features and UGV
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决作物表型参数获取困难且精度不高的问题,以设施生菜为研究对象,提出了一套高精度、低成本的生菜表型参数获取方法。采用具备自动导航、多模态和多视场成像功能的无人地面车(Unmanned ground vehicle,UGV),进行作物生长信息自动巡航采集。本文设计的表型分析管道加入了随机下采样算法,以增强作物点云数据的处理效率,并结合图像分割、聚类等算法提取了生菜高度、最大宽度、植被指数和纹理指数等多维表型特征。此外,将获取的多维成像特征参数与生菜地上生物量实测值进行了皮尔逊(Pearson)相关性分析,筛选出对地上生物量预测最敏感的4个特征变量,利用误差反向传播算法(Back propagation algorithm,BP)分别构建了单一特征和多维特征组合的生物量估测模型。研究结果表明:本文设计的表型分析管道处理5000下采样点云单帧数据平均耗时为0.41s,生菜高度、最大宽度估测的R2分别为0.79、0.77,MAPE分别为4.94%、5.02%。相较于其它生物量估测模型,融合了4个特征变量的估测模型(HWVD)最优,R2、RMSE和MAPE分别为0.82、4.03g、6.04%。本研究为面向现场的作物表型信息快速、准确、无损检测提供了一种有效的方法。

    Abstract:

    Aiming to address the challenges of low accuracy and inefficiency in phenotypic data acquisition, a high-precision, low-cost method for lettuce phenotypic parameter extraction in controlled environments was developed. An unmanned ground vehicle (UGV) equipped with autonomous navigation, multi-modal sensing, and multi-view imaging was deployed for automated in-situ data collection. A phenotype analysis pipeline incorporating a random under-sampling algorithm was designed to enhance point cloud processing efficiency. Image segmentation and clustering algorithms were implemented to extract multi-dimensional features, including plant height, maximum width, vegetation indices, and texture indices. Pearson correlation analysis between these imaging features and fresh biomass measurements identified four key variables highly correlated with biomass prediction. Single-feature and multi-feature biomass estimation models were constructed by using a back propagation algorithm. Results showed that the phenotyping pipeline designed took an average of 0.41s to process a single frame of data from a 5000 downsampled point cloud. The estimation models for lettuce height and maximum width achieved R2 values of 0.79 and 0.77, with mean absolute percentage errors (MAPE) of 4.94% and 5.02%, respectively. Compared with other biomass estimation models, the hybrid model incorporating four feature variables (HWVD) showed optimal performance, achieving an R2 of 0.82, RMSE of 4.03g, and MAPE of 6.04%. This method can provide a rapid, accurate, and non-destructive solution for field-based phenotyping and serve as a robust framework for investigating additional phenotypic traits.

    参考文献
    相似文献
    引证文献
引用本文

张晓东,蔡宗耀,胡炼,毛罕平,李铁柱,张怡雪.基于多维成像特征+UGV的设施蔬菜表型参数检测方法[J].农业机械学报,2025,56(6):509-517. ZHANG Xiaodong, CAI Zongyao, HU Lian, MAO Hanping, LI Tiezhu, ZHANG Yixue. Phenotypic Detection of Facility Vegetables Based on Multi-dimensional Imaging Features and UGV[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(6):509-517.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-27
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-10
  • 出版日期:
文章二维码