基于CA/SPA-CARS算法的小麦条锈病特征波段优选与监测模型构建
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

河南省重点研发与推广专项(科技攻关)项目(232102210093、242102320198)、河南理工大学测绘科学与技术“双一流”学科创建项目(SYJX02)、河南理工大学博士基金项目(B2023-37)、无人机高光谱土壤环境污染评估在工业选址中的应用项目(H23-140)、河南省自然科学基金项目(242300420221)和河南理工大学国家级重大科研成果培育基金项目(NSFRF240101)


Feature Band Selection and Construction of Monitoring Model of Wheat Stripe Rust Based on CA/SPA-CARS Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    作物病害会严重制约作物产量和品质,传统的病害监测方法效率低且易受主观因素影响。高光谱遥感技术以其高光谱分辨率和客观真实性在作物病害监测中展现出重要潜力。本文利用多生育期冬小麦地面高光谱及田间病情指数(Disease index, DI),基于相关性分析(Correlation analysis, CA)和连续投影法(Successive projections algorithm,SPA)分别对光谱数据进行光谱特征降维,通过构建最优参数的竞争性自适应重加权采样(Competitive adaptive reweighted sampling, CARS)算法优选小麦条锈病敏感波段,最后利用偏最小二乘回归(Partial least squares regression, PLSR)、反向传播神经网络(Back propagation neural network, BPNN)和极限学习机(Extreme learning machine, ELM)算法建立基于特征光谱的病情指数模型,比较不同建模方法的建模效果,实现小麦条锈病监测。研究结果表明,不同生育期均显示小麦条锈病敏感特征波段多集中于近红外和短波红外波段,其中挑旗期为842、850、858nm,灌浆期为947、953、1275、1277、1590、1663、1665nm;对比不同建模算法,PLSR模型表现最佳,满足小麦早期病虫害监测需求,且在病害中期显示更明显特征;挑旗期和灌浆期分别以SPA-CARS-MCX和CA-CARS-MSC数据构建PLSR模型预测效果最优,验证集R2分别为0.782和0.861,RMSE分别为0.022和0.094,RPD分别为2.140和2.687。本文构建算法能够为不同生育期小麦条锈病监测提供参考。

    Abstract:

    Crop diseases can seriously restrict crop yield and quality. Traditional disease monitoring methods are inefficient and susceptible to subjective factors. Hyperspectral remote sensing technology has shown great potential in crop disease monitoring due to its high spectral resolution and objective authenticity. Ground hyperspectral and field disease index (DI) data of winter wheat with multiple growth stages were used, the spectral data were preprocessed using correlation analysis (CA) and successful projection algorithm (SPA) respectively, and the sensitive bands of wheat stripe rust through competitive adaptive reweighted sampling (CARS) algorithm that can construct optimal parameters were optimized. Finally, partial least squares regression (PLSR), back propagation neural network (BPNN) and extreme learning machine (ELM) were used to establish the disease index model based on the characteristic spectrum, and the modeling effects of different modeling methods were compared to realize the monitoring of wheat stripe rust. The research results indicated that the sensitive characteristic bands of wheat stripe rust in different growth stages were mainly concentrated in the near infrared and shortwave infrared bands, with 842nm, 850nm, and 858nm in the flag leaf stage and 947nm, 953nm, 1275nm, 1277nm, 1590nm, 1663nm, and 1665nm in the filling stage. In the comparison of different modeling methods, PLSR model performed best, and the model met the needs of early monitoring of wheat diseases and pests, and showed more obvious characteristics in the middle of the disease. During the flag leaf stage and filling stages, the PLSR models constructed with SPA-CARS-MCX and CA-CARS-MSC respectively had the best prediction performance. The R2 of the validation sets were 0.782 and 0.861, the RMSE were 0.022 and 0.094, and the RPD were 2.140 and 2.687, respectively. The algorithm constructed can provide ideas for monitoring wheat stripe rust at different growth stages.

    参考文献
    相似文献
    引证文献
引用本文

谷玲霄,方涛,杜林丹,吴喜芳,李长春,连增增,岳哲.基于CA/SPA-CARS算法的小麦条锈病特征波段优选与监测模型构建[J].农业机械学报,2025,56(6):487-498. GU Lingxiao, FANG Tao, DU Lindan, WU Xifang, LI Changchun, LIAN Zengzeng, YUE Zhe. Feature Band Selection and Construction of Monitoring Model of Wheat Stripe Rust Based on CA/SPA-CARS Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(6):487-498.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-14
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-10
  • 出版日期:
文章二维码