基于优选多源遥感特征和双分支卷积神经网络的茶园提取方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

福建省水利科技项目(MSK202214、MSK202431)和福建省科技创新基金项目(2022C0024)


Tea Plantation Recognition Method Based on Preferred Multi-source Remote Sensing Features and Two-branch Convolutional Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确的茶园分布信息可以为土地利用规划、种植布局优化提供科学的决策支撑,有助于推动茶产业可持续发展。本文基于GF-2 PMS影像的RGB波段,Sentinel-2光学影像计算的NDVI,Sentinel-1 时序SAR数据构建的物候特征(包括茶树生长幅度(Growth amplitude,GA)和生长期长度(Growth length,GL)),以及GF-7立体像对影像计算的坡向、坡度、曲率,构建了茶园多模态遥感特征,并通过随机森林特征优选出最佳组合。利用双分支网络联合学习策略,以AMLNet(Attentional multiscale lightweight encoderdecoder network)为第1分支,Vanilla AMLNet为第2分支,构建耦合多模态信息的双分支网络模型MIPBNet(Multi-modal information parallel branch network);利用特征融合模块(Dual-branch feature fusion block,DBFF)在解码器末端进行特征级融合;利用复合损失函数进行优化训练。研究结果表明:NDVI+GA+坡向+坡度组合最能提高茶园分类精度。基于RGB数据依次加入NDVI、GA、坡向、坡度的组合方案,实验结果表明,融合多模态特征后,茶园提取结果漏提和误提现象明显减少,总体精度提升3.11个百分点。与典型的语义分割模型UNet、UNeXt、Segformer相比,MIPBNet的单分支AMLNet获得了更优的茶园提取结果。

    Abstract:

    Accurate information on tea plantation distribution provides scientific support for land use planning and optimization of planting layouts, contributing to the sustainable development of the tea industry. Multimodal remote sensing features of tea plantation were constructed based on RGB bands from GF-2 PMS imagery, NDVI calculated from Sentinel-2 optical imagery, phenological characteristics derived from Sentinel-1 time-series SAR data, including growth amplitude, GA, and growth length, GL), and slope aspect, slope gradient, and curvature calculated from GF-7 stereo imagery. The optimal feature combination was selected through a random forest feature selection algorithm. A dual-branch network model, multi-modal information parallel branch network (MIPBNet), was built by using a multinetwork joint learning strategy, with attentional multiscale lightweight encoder-decoder network (AMLNet) as the first branch and Vanilla AMLNet as the second branch. A feature fusion module (dual-branch feature fusion block, DBFF) was utilized for feature-level fusion at the end of the decoder, and a composite loss function was employed for optimization training. The research findings were as follows: the combination of NDVI, GA, slope aspect, and slope gradient best improved classification accuracy and was identified as the optimal multi-modal feature set. When RGB data was sequentially augmented with NDVI, GA, slope aspect, and slope gradient, experiments showed a significant reduction in both omitted and falsely extracted tea plantation areas, with an improvement in overall accuracy (OA) of 3.11%. Compared with typical semantic segmentation models such as UNet, UNeXt, and Segformer, the single-branch AMLNet within MIPBNet achieved superior tea plantation extraction results.

    参考文献
    相似文献
    引证文献
引用本文

林欣怡,汪小钦,李蒙蒙,金时来,龙江,冯晓敏,吴瑞姣,林敬兰,李琳.基于优选多源遥感特征和双分支卷积神经网络的茶园提取方法[J].农业机械学报,2025,56(6):446-456. LIN Xinyi, WANG Xiaoqin, LI Mengmeng, JIN Shilai, LONG Jiang, FENG Xiaomin, WU Ruijiao, LIN Jinglan, LI Lin. Tea Plantation Recognition Method Based on Preferred Multi-source Remote Sensing Features and Two-branch Convolutional Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(6):446-456.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-05
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-10
  • 出版日期:
文章二维码