基于无人机与Sentinel-2A遥感数据协同的裸土期土壤含盐量反演
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

陕西省重点研发项目(2022KW-47、2023-YBNY-221)、国家重点研发计划项目(2022YFD1900802)、国家自然科学基金项目(51979233)和中央高校基本科研业务费专项资金项目(2452023078)


Soil Salinity Inversion during Bare Soil Period Based on Collaboration of UAV and Sentinel-2A Remote Sensing Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    土壤盐渍化是制约农业生产的主要因素之一,精确监测土壤盐渍化尤为重要。本研究利用2023年4月8—12日在河套灌区4个实验区域采集的地面实测含盐量数据和无人机(Unmanned verial vehicle, UAV)数据构建偏最小二乘回归(Partial least squares regression, PLSR)、随机森林(Random forest, RF)、反向传播神经网络(Backpropagation neural network, BPNN)和支持向量机回归(Support vector machine regression, SVR) 4种土壤含盐量(Soil salt content, SSC)反演模型。将最优模型反演得到的实验区土壤盐分分布图分别利用最邻近法(Nearest)、双线性内插法(Bilinear)、立方卷积内插法(Cubic) 3种方法重采样到1、5、10m。计算同时期Sentinel-2A卫星对应像元提取平均值作为卫星影像构建反演模型的含盐量,对比分析各尺度下的最优模型,绘制河套灌区土壤盐分分布图。结果表明:使用Bilinear方法在3种尺度下的相关性均略优于其他2种重采样方法,5种尺度下构建的模型精度由大到小依次为0.07m、1.m、5m、10m、原实测土壤含盐量(OSSC),最优尺度0.07m训练集和验证集最佳模型决定系数R2比OSSC分别提升0.24和0.30,均方根误差(RMSE)低0.06、0.19个百分点。本文探究了多尺度土壤含盐量对卫星多光谱遥感平台反演土壤含盐量模型精度的促进作用,为多源遥感大尺度精准土壤盐渍化反演提供了有效理论依据。

    Abstract:

    Soil salinization is one of the major constraints to agricultural production, and accurate monitoring of soil salinization is particularly important. The ground-based measured salinity data and unmanned aerial vehicle (UAV) data collected during April 8-12, 2023, in four experimental areas of Hetao Irrigation District were used to construct partial least squares regression (PLSR), random forest (RF), backpropagation neural network (BPNN) and support vector machine regression (SVR) inversion models for soil salt content (SSC). The experimental results obtained from the inversion of the optimal model were analyzed. The soil salt distribution maps of the experimental area obtained from the inversion of the optimal model were resampled to be 1m, 5m, and 10m by using the Nearest, Bilinear, and Cubic methods, respectively, and the average values of the corresponding image elements of the Sentinel-2A satellites in the same period were calculated as the salt content of the inversion model constructed by the satellites, and then compared with the optimal model at all scales. The optimal model at each scale was analyzed and the soil salinity distribution map of Hetao Irrigation Area was drawn. The results showed that the correlation of the Bilinear method at three scales was slightly better than the other two resampling methods. The accuracy ranking of the models constructed at five scales, from the highest to the lowest, was 0.07m, 1m, 5m, 10m, and the original SSC (OSSC), the best model determination coefficient R2 of the training set and validation set at the optimal scale of 0.07m was 0.24 and 0.30 higher than that of OSSC, respectively, and the root mean square error (RMSE) was 0.06 percentage points and 0.19 percentage points lower. The research explored the promotion effect of multi-scale soil salinity on the accuracy of soil salinity model inversion by satellite multispectral remote sensing platform, which provided an effective theoretical basis for multi-source remote sensing large-scale accurate soil salinity inversion.

    参考文献
    相似文献
    引证文献
引用本文

董雨昕,韩文霆,崔欣,马伟童,翟雪东,李广.基于无人机与Sentinel-2A遥感数据协同的裸土期土壤含盐量反演[J].农业机械学报,2025,56(6):434-445. DONG Yuxin, HAN Wenting, CUI Xin, MA Weitong, ZHAI Xuedong, LI Guang. Soil Salinity Inversion during Bare Soil Period Based on Collaboration of UAV and Sentinel-2A Remote Sensing Data[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(6):434-445.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-26
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-10
  • 出版日期:
文章二维码