基于改进YOLO v11n-seg的奶牛乳房炎检测方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2022YFC2304004)


Detection Method for Cow Mastitis Based on Improved YOLO v11n-seg
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    奶牛患乳房炎时其乳表温度与眼表温度差值较大,因此可将奶牛乳眼温差作为乳房炎判断指标。针对现有热红外图像检测奶牛乳房炎精度低、容易误检和漏检等问题,本文提出了一种基于YOLO v11n-seg结合热红外与可见光配准图像的奶牛乳房炎检测方法。为了在有限算力下能更精准地分割奶牛乳房和眼睛,对基线模型(YOLO v11n-seg)进行了改进。使用ADown卷积模块替换基线模型部分普通卷积进行特征提取,在资源有限的环境下有利于模型部署和使用;在主干网络末端引入MLCA注意力机制,显著提升了小尺度目标特征提取能力;颈部网络采用RepGFPN结构优化特征融合与信息传递能力,进一步提升分割精度。改进YOLO v11n-seg模型对奶牛眼睛和乳房平均分割精度分别为90.3%和97.9%。与基线模型相比,其对眼睛和乳房的平均分割精度提高7.1、0.7个百分点,模型参数量减少14.3%,模型计算量降低12.5%。比较分割掩膜与温度矩阵提取的乳眼温差与设定的温差阈值,并用体细胞计数法进行验证。结果表明,奶牛乳房炎检测精度可达88.46%。表明该方法能够实现奶牛乳眼分割并应用于奶牛乳房炎检测。

    Abstract:

    When dairy cows suffer from mastitis, the temperature difference between their udder surface and eye surface is relatively large. Therefore, the temperature difference between the udder and eye can be used as an indicator for mastitis detection. To address the issues of low accuracy, false detections, and missed detections in existing thermal infrared image-based mastitis detection methods, an improved YOLO v11n-seg method for mastitis detection in dairy cows was proposed, which utilized both thermal infrared and visible light registered images. To achieve more precise segmentation of the cow’s udder and eyes under limited computational resources, targeted improvements were made. Firstly, the ADown convolution module was used to replace some of the ordinary convolution layers in the baseline model (YOLO v11n-seg) for efficient feature extraction, which was beneficial for model deployment and usage in resource-constrained environments. Secondly, the MLCA attention mechanism was introduced at the end of the backbone network, significantly enhancing the feature extraction capability for smallscale objects. Finally, the RepGFPN structure was adopted in the neck network to optimize feature fusion and information transmission, further improving segmentation accuracy. The improved YOLO v11n-seg model achieved an average segmentation accuracy of 90.3% for cow eyes and 97.9% for udders. Compared with the baseline model, the improved YOLO v11n-seg model increased the average segmentation accuracy by 7.1 percentage points and 0.7 percentage points, respectively, while reducing the number of model parameters by 14.3% and the computational cost by 12.5%. The temperature difference between the udder and eye, extracted from the segmentation mask and temperature matrix, was compared with the set temperature difference threshold and verified by the somatic cell count method. The results showed that the accuracy of mastitis detection in dairy cows reached 88.46%. This proved that the proposed method can achieve udder and eye segmentation in dairy cows and can be applied to mastitis detection.

    参考文献
    相似文献
    引证文献
引用本文

田文斌,姚渝,吕昊暾,杜瑞杰,王宁.基于改进YOLO v11n-seg的奶牛乳房炎检测方法[J].农业机械学报,2025,56(6):237-246. TIAN Wenbin, YAO Yu, Lü Haotun, DU Ruijie, WANG Ning. Detection Method for Cow Mastitis Based on Improved YOLO v11n-seg[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(6):237-246.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-04-16
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-10
  • 出版日期:
文章二维码