基于YOLO v8 STSF的多类别害虫识别算法与监测系统研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

安徽省科技重大专项(202203a06020007)、福建省重点科技创新研究项目 (2023XQ005)和安徽省高校创新团队项目(2023AH010039)


Multi-category Pest Identification Algorithm and Monitoring System Based on YOLO v8 STSF
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    水稻害虫危害十分巨大,不仅对水稻造成直接的生理破坏,还传播病害,严重时导致稻田绝收,造成难以估量的损失。水稻害虫精准识别与实时监测是减少农业损失的关键,针对虫情测报灯图像中害虫密集、体态差异细微及小目标漏检等问题,提出一种基于YOLO v8-STSF模型的水稻害虫智能识别方法。通过引入Swin Transformer模块增强骨干网络的多尺度特征提取能力,结合分布移位卷积(DSConv)优化颈部网络特征融合,并采用Focal EIoU损失函数提升密集小目标定位精度。构建了包含多类水稻害虫的7000幅图像数据集进行识别验证,YOLO v8-STSF模型在测试集上的精确率为95.45%、召回率为90.45%、F1值为90.03%,较原YOLO v8模型分别提升2.13、0.33、3.09个百分点,在PC端的推理速度为32f/s,满足实时需求。同时以Web端监测系统为基础,设计基于Android移动端的虫情监测系统,在田间测试中系统平均响应时间为1.38s,识别准确率为96.34%,漏检率为3.86%。研究结果可为水稻害虫精准防控提供高效技术支持,推动农业病虫害监测智能化发展。

    Abstract:

    Rice pests critically threaten rice cultivation by inflicting direct physiological damage, spreading diseases, and potentially causing catastrophic field extinction, leading to significant agricultural losses. To address challenges such as dense pest clusters, subtle morphological variations, and frequent small-target missed detections in pest detection lamp images, an intelligent recognition method was proposed by using an enhanced YOLO v8-STSF model. Key innovations included integrating a Swin Transformer module to boost backbone network multiscale feature extraction, optimizing neck network feature fusion via distribution shift convolution (DSConv), and adopting the Focal EIoU loss function to enhance small-target localization. Validated on a 7000 image multi-species pest dataset, the improved model achieved 95.45% of precision, 90.45% of recall, and 90.03% of F1-score, surpassing the original YOLO v8 by 2.13, 0.33, and 3.09 percentage points, respectively, while operating at 32f/s for real-time PC-based monitoring. A dual-platform system (Web and Android mobile) demonstrated field performance with 1.38s average response time, 96.34% of accuracy, and 3.86% of missed detection rate. This system can provide an efficient solution for precision pest control and advance intelligent agricultural monitoring.

    参考文献
    相似文献
    引证文献
引用本文

王兴旺,查海涅,卢浩男,王禹彬,吴东昇,王旭峰,胡灿,陈学永.基于YOLO v8 STSF的多类别害虫识别算法与监测系统研究[J].农业机械学报,2025,56(6):228-236. WANG Xingwang, ZHA Hainie, LU Haonan, WANG Yubin, WU Dongsheng, WANG Xufeng, HU Can, CHEN Xueyong. Multi-category Pest Identification Algorithm and Monitoring System Based on YOLO v8 STSF[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(6):228-236.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-18
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-10
  • 出版日期:
文章二维码