基于高光谱成像的小麦赤霉病严重度轻量化检测方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(32201662)和陕西省重点研发计划项目(2025NC-YBXM-215)


Hyperspectral Imaging-based Lightweight Detection Method for Rapid Detection of Fusarium Head Blight Severity in Wheat
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为实现对小麦赤霉病(Fusarium head blight,FHB)严重度等级快速无损检测,采用高光谱成像技术结合机器学习模型进行建模分析。通过对小麦麦穗中部籽粒进行镰刀菌真菌接种,共获取1660个不同程度的患病麦穗样本。利用高光谱成像设备采集麦穗样本高光谱信息,将整个麦穗作为感兴趣区域获取其平均光谱信息。通过对比归一化(Normalization)、标准正态变量变换(Standard normal variate,SNV)、多元散射校正(Multiplicative scatter correction,MSC)和平滑导数(Savitzky-Golay,SG)4种不同预处理后光谱对FHB严重度等级识别的准确率,选用SNV算法作为最佳预处理方法,并对其处理后的光谱数据进行进一步分析。随后对预处理后的光谱数据采用连续投影算法(Successive projections algorithm,SPA)、竞争性自适应重加权采样(Competitive adaptive reweighted sampling,CARS)、统一流形逼近与投影(Uniform manifold approximation and projection,UMAP)和线性判别分析(Linear discriminant analysis,LDA)算法进行降维,通过比较最终选择能降到3维,且保持分类准确率以及较低时间复杂度的LDA算法。揭示了LDA判别FHB严重度等级的特征波段处于540nm叶绿素反射峰至650nm红光吸收谷波段区间,是由于随着病情不断加重,叶绿素含量急速减少和叶片结构损伤的协同效应。最终构建结合SNV和LDA的轻量级支持向量机(Support vector machine,SVM)FHB严重度等级识别的最优模型。结果表明,该研究样本数据在构建的算法模型下测试集和训练集的准确率分别为96.05%和94.71%,且LDA将256维数据降到3维空间的时间复杂度仅为0.09s,能够快速高效地进行FHB严重度判别且具有优秀的泛化能力,为将来田间大面积实时快速的识别FHB奠定了基础。

    Abstract:

    Aiming to achieve rapid and non-destructive detection of Fusarium head blight (FHB) severity levels, the hyperspectral imaging technology combined with machine learning models for analysis was employed. A total of 1660 wheat ear samples with varying degrees of infection were obtained by inoculating Fusarium fungi into the middle grains of wheat ears. Hyperspectral information of the samples was collected by using a hyperspectral imaging system, with the entire wheat ear designated as the region of interest (ROI) to extract average spectral data. By comparing the classification accuracy of four preprocessing methods—normalization, standard normal variate (SNV), multiplicative scatter correction (MSC), and Savitzky-Golay (SG) smoothing derivatives—the SNV algorithm was selected as the optimal preprocessing method. Subsequent analyses were conducted on the SNV-processed spectral data. Feature wavelength selection was performed by using the successive projections algorithm (SPA) and competitive adaptive reweighted sampling (CARS), while dimensionality reduction was implemented via uniform manifold approximation and projection (UMAP) and linear discriminant analysis (LDA). After comparing these algorithms, LDA was ultimately chosen for its ability to reduce data to three dimensions while maintaining classification accuracy (96.05% for the test set and 94.71% for the training set) and low computational complexity (0.09s processing time). It was revealed that the critical spectral range for LDA-based FHB severity discrimination lay between 540nm (chlorophyll reflection peak) and 650nm (red light absorption valley), attributed to the synergistic effects of rapid chlorophyll degradation and structural tissue damage as infection progresses. A lightweight support vector machine (SVM) model integrating SNV and LDA was developed as the optimal framework for FHB severity classification. The results demonstrated that the proposed algorithm achieved high accuracy with excellent generalization capability, enabling efficient FHB severity assessment. The research result can lay a foundation for future large-scale, real-time field detection of FHB.

    参考文献
    相似文献
    引证文献
引用本文

梁晓颖,张紫婷,杨硕,陈煦,姚志凤,宋怀波.基于高光谱成像的小麦赤霉病严重度轻量化检测方法[J].农业机械学报,2025,56(6):218-227. LIANG Xiaoying, ZHANG Ziting, YANG Shuo, CHEN Xu, YAO Zhifeng, SONG Huaibo. Hyperspectral Imaging-based Lightweight Detection Method for Rapid Detection of Fusarium Head Blight Severity in Wheat[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(6):218-227.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-10
  • 出版日期:
文章二维码