基于改进YOLO v8的玉米大豆间套复种作物行导航线提取方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(52265033、51865022)和云南省自然科学基金项目(202401AS070115)


Extraction Method of Navigation Lines for Maize Soybean Intercropping Based on Improved YOLO v8
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对玉米大豆间套复种场景下导航线提取算法在复杂农田环境中精度低和适应性差等问题,提出一种基于改进YOLO v8的作物行间导航线提取方法,以提升自主移动底盘在田间作业中的导航精度。针对玉米大豆作物行间专项分割任务,以YOLO v8为基础融合StarNet网络,并优化检测头构建了StarNet-YOLO主干网络。通过自主设计的ASPPFE模块、深度可分离卷积和CSE结构等策略优化,同时利用LAMP剪枝算法对其轻量化。此外,引入Douglas-Peucker算法获取逼近作物行间轮廓,并提出评分机制确定轮廓的起始线段和终点线段中点,进而实现作物行导航线的精确拟合。消融试验结果表明,ASPPFE的mAP50seg(交并比为0.5时实例分割的平均精度均值)达到99.5%,其mAP50-95seg(交并比为0.5~0.95时实例分割的平均精度均值)比SPPELAN、SPPF和ASPPF分别提升1.0、1.0、0.4个百分点。经剪枝率25%优化后的StarNet-YOLO网络,mAP50-95seg仅降低0.02个百分点,而推理速度从390f/s提升至563f/s,浮点运算量从7.2×109降至4.7×109。在同一数据集下对YOLO v5、YOLO v7、YOLO v8和改进YOLO v8进行对比发现,StarNet-YOLO网络mAP50-95seg比其他3种算法分别提升5.5、4.8、2.8个百分点。作物行间导航线拟合验证结果表明,平均角度误差和距离误差分别为2.01°和23.17像素。在复杂农田环境下本文导航线提取算法表现出优异性能,实现检测速度与精度平衡,为玉米大豆等农作物田间作业自主机器人视觉导航提供了新的技术思路。

    Abstract:

    Aiming to addressing challenges of low accuracy and poor adaptability of navigation line extraction algorithms in complex agricultural environments for maize-soybean intercropping scenarios, an improved YOLO v8-based method for extracting crop row navigation lines was proposed to enhance autonomous mobile platform navigation precision during field operations. For the specialized task of segmenting maize and soybean crop rows, a StarNet-YOLO backbone network was constructed by integrating the StarNet network with YOLO v8 and optimizing the detection head. The network was enhanced through strategies, including a custom-designed ASPPFE module, depth-separable convolution, and CSE structure optimization, while also implementing lightweight design by using the LAMP pruning algorithm. Additionally, the Douglas-Peucker algorithm was introduced to approximate crop row contours, and a scoring mechanism was developed to determine the midpoints of contour start and end segments, enabling precise fitting of crop row navigation lines. Ablation experiments showed that ASPPFE achieved an mean average precision for instance segmentation at 0.5 IoU (mAP50seg) of 99.5%, with its mAP across IoU thresholds 0.5~0.95 (mAP50-95seg) improved by 1.0, 1.0, and 0.4 percentage points compared with that of SPPELAN, SPPF, and ASPPF, respectively. After 25% pruning optimization, the StarNet-YOLO network’s mAP50-95seg was decreased by only 0.02 percentage points, while inference speed was increased from 390f/s to 563f/s, and floating-point operations were reduced from 7.2×109 to 4.7×109. Comparative testing on the same dataset showed that StarNet-YOLO’s mAP50-95seg outperformed YOLO v5, YOLO v7, and baseline YOLO v8 by 5.5, 4.8, and 2.8 percentage points, respectively. Validation of crop row navigation line fitting revealed average angular and distance errors of 2.01° and 23.17 pixels. This navigation line extraction algorithm demonstrated excellent performance in complex agricultural environments, balancing detection speed and accuracy, and provided a technical approach for visual navigation of autonomous robots operating in maize, soybean, and other crop fields.

    参考文献
    相似文献
    引证文献
引用本文

朱惠斌,李仕,白丽珍,王明鹏,贾宇轩,兰冀贤.基于改进YOLO v8的玉米大豆间套复种作物行导航线提取方法[J].农业机械学报,2025,56(6):205-217. ZHU Huibin, LI Shi, BAI Lizhen, WANG Mingpeng, JIA Yuxuan, LAN Jixian. Extraction Method of Navigation Lines for Maize Soybean Intercropping Based on Improved YOLO v8[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(6):205-217.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-30
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-10
  • 出版日期:
文章二维码