基于时空耦合的玉米播种位置预测系统设计与试验
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2024YFD1500405)


Design and Test of Maize Sowing Position Prediction System Based on Spatial Temporal Coupling
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对玉米播种环节设计了一种基于时空耦合的玉米播种位置预测系统。该系统集成对射式红外光电传感器、GNSS-RTK高精度定位模块及数据传输单元,通过实时监测种子下落信号,结合播种机航向、速度与时空滞后补偿模型,预测种子落地空间位置,最终将数据上传云端。系统采用STM32F103单片机作为中枢控制器,构建分段式空间位置换算模型解决播种机主天线与红外传感器间的偏移问题;引入时空滞后补偿模型,测量得种子下落延时、定位信息传输延时及程序执行延时分别为107.7、50、39.5ms,最终修正播种机前进方向位移偏差;通过制定不同区间对经纬度偏差正负值的方向响应规则,明确耦合预测模型最终形态。田间试验结果表明,系统预测种子落地位置与实际位置平均偏差为36.86mm,标准差为3.57mm,变异系数为9.69%,验证了模型有效性。该系统能够实现播种位置数据实时记录与云端存储,为后续中耕、施肥等环节的精准协同管理提供参考。

    Abstract:

    A maize sowing position prediction system based on spatial temporal coupling was designed for maize sowing process. The system integrated an opposed infrared photoelectric sensor, a GNSS-RTK high-precision positioning module and a data transmission unit to predict the spatial position of seed landing by real-time monitoring of seed falling signals and combining the sowing machine heading, speed and spatial-temporal lag compensation model, and data would eventually be uploaded to the cloud. The system adopted STM32F103 microcontroller as the central controller, and a segmented spatial position conversion model was constructed to solve the offset problem between the main antenna of the planter and the infrared sensors; the spatial temporal hysteresis compensation model was introduced, and the seed falling delay, the localization information transmission delay, and the program execution delay were measured to be 107.7ms, 50ms, and 39.5ms, respectively, and finally the position deviation of the planter’s forward direction was corrected. The final shape of the coupled prediction model was clarified by formulating the directional response rules for the positive and negative values of latitude and longitude deviations in different intervals. The results of the field test showed that the average deviation of the seed landing position predicted by the system from the actual position was 36.86mm, with a standard deviation of 3.57mm and a coefficient of variation of 9.69%, which verified the effectiveness of the model. The system was capable of real-time recording and cloud storage of seeding position data, providing a reference for the subsequent precise and collaborative management of mid-tillage and fertilization.

    参考文献
    相似文献
    引证文献
引用本文

贾麟,马飞扬,徐征鑫,张馨悦,徐子杨,王超,王庆杰,李洪文.基于时空耦合的玉米播种位置预测系统设计与试验[J].农业机械学报,2025,56(6):146-154. JIA Lin, MA Feiyang, XU Zhengxin, ZHANG Xinyue, XU Ziyang, WANG Chao, WANG Qingjie, LI Hongwen. Design and Test of Maize Sowing Position Prediction System Based on Spatial Temporal Coupling[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(6):146-154.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-01
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-10
  • 出版日期:
文章二维码