基于改进分数阶粒子群算法的多无人车取送货任务调度方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(51777058)


Task Scheduling for Multi-unmanned Vehicle Delivery Using Improved Fractional-order Particle Swarm Optimization Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对农产品运输场景下产地与销地配送环节中的多无人车协同任务分配问题,首先构建涵盖行程成本、时间违反成本、负载违反成本和启动成本的多无人车取送货任务调度组合优化模型。提出一种改进分数阶粒子群算法(Improved fractional order particle swarm optimization,IFOPSO)。通过在粒子群算法(PSO)中引入分数阶列维随机步长,提高PSO的全局搜索能力,进一步设计列维阶次的自适应调整机制,提高IFOPSO的收敛精度和寻优性能。基于10个基准函数的对比实验结果表明,提出的IFOPSO算法在收敛速度、精度以及全局搜索能力等方面,相较于现有算法表现出显著优势。最后将IFOPSO算法应用于多无人车任务分配问题的求解中,并与传统PSO、改进PSO和分数阶PSO算法进行对比实验,结果表明该算法能够有效降低调度成本,并快速找到合理的取送货方案。

    Abstract:

    Aiming to handle the problem of multi-unmanned vehicle task allocation in agricultural product transportation scenarios between production sites (farms) and distribution sites (markets), a novel combinatorial optimization model that incorporated delivery time requirements, vehicle constraints, and task complexity was established at first. Subsequently, an improved fractional order particle swarm optimization (IFOPSO) algorithm was proposed. By introducing a fractional-order Lévy random step size into the particle swarm optimization (PSO) algorithm, the global search capability was significantly enhanced. Additionally, a mechanism for adaptively adjusting the Lévy order was designed to improve the convergence accuracy, robustness, and overall optimization performance of IFOPSO. Experimental results based on ten benchmark functions demonstrated that the proposed IFOPSO algorithm exhibited significant advantages in terms of convergence speed, accuracy, and global search ability compared with existing algorithms. Furthermore, an optimization model for unmanned vehicle pickup and delivery task scheduling was developed, where the total cost accounted for travel cost, time violation cost, load violation cost, and start-up cost. The IFOPSO algorithm was applied to solve this task allocation problem, and comparative experiments with traditional PSO, improved PSO, and fractional order PSO algorithms showed that the proposed algorithm effectively reduced scheduling costs, improved solution efficiency, and rapidly identified a feasible and optimal pickup and delivery solution.

    参考文献
    相似文献
    引证文献
引用本文

陈玉全,冯丽曼,孙克璇,张楠杰,王冰.基于改进分数阶粒子群算法的多无人车取送货任务调度方法[J].农业机械学报,2025,56(6):109-118. CHEN Yuquan, FENG Liman, SUN Kexuan, ZHANG Nanjie, WANG Bing. Task Scheduling for Multi-unmanned Vehicle Delivery Using Improved Fractional-order Particle Swarm Optimization Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(6):109-118.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-11
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-10
  • 出版日期:
文章二维码