基于HACCP内控数据的水产品质量安全风险预警
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

广东省重点领域研发计划项目(2021B0202070001)


Early Warning of Aquatic Product Quality and Safety Risk Based on HACCP Internal Control Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了加强水产品冷链加工及物流企业对内控数据的隐含质量安全风险管理,实现降本增效,以生食牡蛎HACCP计划为例,从风险指标体系构建入手,构建了质量安全风险预警指标体系,并结合风险预警监控数据的多模态特点,构建了融合群专家领域经验知识与深度学习算法的质量安全风险预警模型。在基于HACCP计划设计质量安全预警数据采集点并获得监控数据的基础上,采用AHP方法获得专家的风险指标效用值方案,又采用熵权法优选多专家群决策中的效用值方案,进而确定评级数据,由监控数据以及优选的专家评级数据一起构成原始数据集。为保证预警的敏感度,分别采用了合格数据集和完整数据集作为数据集,融合具有捕捉多维数据中复杂关系能力的LSTM模型与具有处理复杂分类边界能力的RBF模型构建预警模型开展仿真实验,并做LSTM模型、RBF模型以及融合的LSTM-RBF模型在不同数据集上的对比分析。实验结果表明,融合的LSTM-RBF模型在合格数据集和完整数据集上都有96%和90%的准确率,而且合格数据集上的测试效果明显更好。

    Abstract:

    In order to strengthen the implied quality and safety risk management of aquatic products cold chain enterprises on internal control data and realize cost reduction and efficiency, taking the HACCP plan of raw oysters as an example, the quality and safety risk warning indicator system was constructed from the construction of the risk indicator system and combined with the multimodal characteristics of the risk warning monitoring data to construct the quality and safety fusion of group experts-domain empirical knowledge and deep learning algorithms. On the basis of designing quality and safety early warning data collection points and obtaining monitoring data based on the HACCP plan, the AHP method was used to obtain the utility value scheme of the experts-risk indicators, and the entropy weight method was used to optimize the utility value scheme of multi-expert group decision-making, and then the rating data was determined, which constituted the original dataset from the monitoring data as well as the optimized expert rating data. In order to ensure the sensitivity of the early warning, the qualified dataset and the complete dataset were adopted as the dataset, and the LSTM model with the ability to capture the complex relationships in the multidimensional data and the RBF model with the ability to deal with the complex classification boundaries were fused to construct the early warning model to carry out the simulation experiments, and to do the comparative analyses between the LSTM model, the RBF model, and the fused LSTM-RBF model on the different datasets. The experimental results showed that the fused LSTM-RBF model had 96% and 90% accuracies on both qualified and complete datasets, and the test results on qualified datasets were significantly better.

    参考文献
    相似文献
    引证文献
引用本文

葛艳,陈睿,邹一波,陈明,王文娟.基于HACCP内控数据的水产品质量安全风险预警[J].农业机械学报,2025,56(6):67-77. GE Yan, CHEN Rui, ZOU Yibo, CHEN Ming, WANG Wenjuan. Early Warning of Aquatic Product Quality and Safety Risk Based on HACCP Internal Control Data[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(6):67-77.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-03
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-10
  • 出版日期:
文章二维码